# Browsing by Subject "OFDM"

Now showing 1 - 11 of 11

###### Results Per Page

###### Sort Options

Item A 2.4 GHz Phase Modulator for a WLAN OFDM Polar Transmitter in 0.18 um CMOS(2014-09-11) Arbabi, ShokoufehShow more This research focuses on the design and implementation of a digital active phase modulator path of a polar transmitter in the case of orthogonal frequency division multiplex WLAN application. The phase modulation path of the polar transmitter provides a constant envelope phase modulated signal to the Power amplifier(PA) , operating in nonlinear high efficient switching mode. The core design of the phase modulator is based on linear vector-sum phase shifting topology to differential quadrature input signals. The active phase shifter consists of a DAC that generates binary weighted currents for I and Q branches and differential signed adder that vector-sums the generated quadrature currents to generate the phase at the output.6 bits control the phase shifter, creating 64 states with the resolution of 5:625? for the whole 360?. The linear (binary weighted) vector-sum technique generates a reduction in the resultant amplitude that should be taken into consideration in case of nonlinear PA in polar transmission. On the other hand, the digital phase information is applied as the control bits to the phase shifter that determine the weightings and the signs of the I and Q vectors. The key point is the operation of the phase modulator in terms of phase accuracy, with the wideband modulation standard such as OFDM WLAN. A technique has been proposed to enable the polar phase modulator to operate with a real-time wideband data and to compensate for the phase shifter output reduction. Since the reduction in gain is due to vector sum resultant of I and Q currents, it is compensated by modifying the I and Q currents for each 64 phase states. The design is implemented using 0.18 um CMOS technology and measured with maximum data rate of 64 QAM,OFDM modulation of WLAN standard. The output amplitude of the phase shifter with the correction technique is approximately constant over the 64 states with maximum variation of 3.5mv from the constant peak to peak value. The maximum achieved phase error is about 2? with a maximum DNL of 0.257.Show more Item Analysis of coded OFDM system over frequency-selective fading channels(Texas A&M University, 2004-11-15) Zheng, JunShow more This thesis considers the analysis of system performance and resource allocation for a coded OFDM system over frequency selective fading channels. Due to the inseparable role taken by channel coding in a coded OFDM system, an information theoretical analysis is carried out and taken as the basis for the system performance and throughput. Based on the results of the information theoretical analysis, the optimal system BER performance of a coded OFDM system is first shown to converge to the outage probability for large OFDM block lengths. Instead of evaluating the outage probability numerically, we provide in this thesis a simple analytical closed form approximation of the outage probability for a coded OFDM system over frequency selective quasi-static fading channels. Simulation results of the turbo-coded OFDM systems further confirm the approximation of the outage probability. By taking the instantaneous channel capacity as the analytical building block, system throughput of a coded OFDM system is then provided. With the aim to compare the performance difference between adaptive and uniform resource allocation strategies, the system throughput of different allocation schemes under various channel conditions is analyzed. First, it is demonstrated that adaptive power allocation over OFDM sub-carriers at the transmitter achieves very little gain in terms of throughput over a uniform power distribution scheme. Theoretical analysis is then provided of the throughput increase of adaptive-rate schemes compared with fixed-rate schemes under various situations. Two practical OFDM systems implementing rate-compatible-punctured-turbo-code-based (RCPT-based) hybrid automatic-repeat-request (Hybrid-ARQ) and redundancy incremental Hybrid-ARQ protocols are also provided to verify the analytical results.Show more Item Code optimization and analysis for multiple-input and multiple-output communication systems(Texas A&M University, 2005-11-01) Yue, GuosenShow more Design and analysis of random-like codes for various multiple-input and multiple-output communication systems are addressed in this work. Random-like codes have drawn signiﬁcant interest because they oﬀer capacity-achieving performance. We ﬁrst consider the analysis and design of low-density parity-check (LDPC) codes for turbo multiuser detection in multipath CDMA channels. We develop techniques for computing the probability density function (pdf) of the extrinsic messages at the output of the soft-input soft-output (SISO) multiuser detectors as a function of the pdf of input extrinsic messages, user spreading codes, channel impulse responses, and signal-to-noise ratios. Using these techniques, we are able to accurately compute the thresholds for LDPC codes and design good irregular LDPC codes. We then apply the tools of density evolution with mixture Gaussian approximations to optimize irregular LDPC codes and to compute minimum operational signal-to-noise ratios for ergodic MIMO OFDM channels. In particular, the optimization is done for various MIMO OFDM system conﬁgurations which include diﬀerent number of antennas, diﬀerent channel models and diﬀerent demodulation schemes. We also study the coding-spreading tradeoﬀ in LDPC coded CDMA systems employing multiuser joint decoding. We solve the coding-spreading optimization based on the extrinsic information SNR evolution curves for the SISO multiuser detectors and the SISO LDPC decoders. Both single-cell and multi-cell scenarios will be considered. For each of these cases, we will characterize the extrinsic information for both ﬁnite-size systems and the so-called large systems where asymptotic performance results must be evoked. Finally, we consider the design optimization of irregular repeat accumulate (IRA) codes for MIMO communication systems employing iterative receivers. We present the density evolution-based procedure with Gaussian approximation for optimizing the IRA code ensemble. We adopt an approximation method based on linear programming to design an IRA code with the extrinsic information transfer (EXIT) chart matched to that of the soft MIMO demodulator.Show more Item Graphical models and message passing receivers for interference limited communication systems(2013-08) Nassar, Marcel; Evans, Brian L. (Brian Lawrence), 1965-Show more In many modern wireless and wireline communication networks, the interference power from other communication and non-communication devices is increasingly dominating the background noise power, leading to interference limited communication systems. Conventional communication systems have been designed under the assumption that noise in the system can be modeled as additive white Gaussian noise (AWGN). While appropriate for thermal noise, the AWGN model does not always capture the interference statistics in modern communication systems. Interference from uncoordinated users and sources is particularly harmful to communication performance because it cannot be mitigated by current interference management techniques. Based on previous statistical-physical models for uncoordinated wireless interference, this dissertation derives similar models for uncoordinated interference in PLC networks. The dissertation then extends these models for wireless and powerline interference to include temporal dependence among amplitude samples. The extensions are validated with measured data. The rest of this dissertation utilizes the proposed models to design receivers in interference limited environments. Prior designs generally adopt suboptimal approaches and often ignore the problem of channel estimation which limits their applicability in practical systems. This dissertation uses the graphical model representation of the OFDM system to propose low-complexity message passing OFDM receivers that leverage recent results in soft-input soft-output decoding, approximate message passing, and sparse signal recovery for joint channel/interference estimation and data decoding. The resulting receivers provide huge improvements in communication performance (more than 10dB) over the conventional receivers at a comparable computational complexity. Finally, this dissertation addresses the design of robust receivers that can be deployed in rapidly varying environments where the interference statistics are constantly changing.Show more Item Iterative receivers for OFDM systems with dispersive fading and frequency offset(Texas A&M University, 2004-09-30) Liu, HuiShow more The presence of dispersive fading and inter-carrier interference (ICI) constitute the major impediment to reliable communications in orthogonal frequency-division multiplexing (OFDM) systems. Recently iterative (``Turbo'') processing techniques, which have been successfully applied to many detection/decoding problems, have received considerable attention. In this thesis, we first aim on the design of iterative receiver for single antenna OFDM system with frequency offset and dispersive fading. Further work is then extended to space-time block coded (STBC) OFDM system. At last, the technique is applied to STBC-OFDM system through a newly built channel model, which is based on a physical description of the propagation environment. The performance of such systems are verified by computer simulations. The simulation results show that the iterative techniques work well in OFDM systems.Show more Item LDPC code-based bandwidth efficient coding schemes for wireless communications(2009-06-02) Sankar, HariShow more This dissertation deals with the design of bandwidth-efficient coding schemes with Low-Density Parity-Check (LDPC) for reliable wireless communications. Code design for wireless channels roughly falls into three categories: (1) when channel state information (CSI) is known only to the receiver (2) more practical case of partial CSI at the receiver when the channel has to be estimated (3) when CSI is known to the receiver as well as the transmitter. We consider coding schemes for all the above categories. For the first scenario, we describe a bandwidth efficient scheme which uses highorder constellations such as QAM over both AWGN as well as fading channels. We propose a simple design with LDPC codes which combines the good properties of Multi-level Coding (MLC) and bit-interleaved coded-modulation (BICM) schemes. Through simulations, we show that the proposed scheme performs better than MLC for short-medium lengths on AWGN and block-fading channels. For the first case, we also characterize the rate-diversity tradeoff of MIMO-OFDM and SISO-OFDM systems. We design optimal coding schemes which achieve this tradeoff when transmission is from a constrained constellation. Through simulations, we show that with a sub-optimal iterative decoder, the performance of this coding scheme is very close to the optimal limit for MIMO (flat quasi-static fading), MIMO-OFDM and SISO OFDM systems. For the second case, we design non-systematic Irregular Repeat Accumulate (IRA) codes, which are a special class of LDPC codes, for Inter-Symbol Interference (ISI) fading channels when CSI is estimated at the receiver. We use Orthogonal Frequency Division Multiplexing (OFDM) to convert the ISI fading channel into parallel flat fading subchannels. We use a simple receiver structure that performs iterative channel estimation and decoding and use non-systematic IRA codes that are optimized for this receiver. This combination is shown to perform very close to a receiver with perfect CSI and is also shown to be robust to change in the number of channel taps and Doppler. For the third case, we look at bandwidth efficient schemes for fading channels that perform close to capacity when the channel state information is known at the transmitter as well as the receiver. Schemes that achieve capacity with a Gaussian codebook for the above system are already known but not for constrained constellations. We derive the near-optimum scheme to achieve capacity with constrained constellations and then propose coding schemes which perform close to capacity. Through linear transformations, a MIMO system can be converted into non-interfering parallel subchannels and we further extend the proposed coding schemes to the MIMO case too.Show more Item Machine learning for link adaptation in wireless networks(2011-12) Daniels, Robert C.; Heath, Robert W., Ph. D.; Andrews, Jeffrey; Nettles, Scott; Caramanis, Constantine; Qiu, LiliShow more Link adaptation is an important component of contemporary wireless networks that require high spectral efficiency and service a variety of network applications/configurations. By exploiting information about the wireless channel, link adaptation strategically selects wireless communication transmission parameters in real-time to optimize performance. Link adaptation in practice has proven challenging due to impairments outside system models and analytical intractability in modern broadband networks with multiple antennas (MIMO), orthogonal frequency division multiplexing (OFDM), forward error correction, and bit-interleaving. The objective of this dissertation is to provide simple and flexible link adaptation algorithms with few link model assumptions that are amenable to modern wireless networks. First, a complete design and analysis of supervised learning for link adaptation in MIMO-OFDM is provided. This includes the construction of a publicly available data set, a new frame error rate bound leading to a new feature set, and IEEE 802.11n performance evaluation to verify that my design outperforms existing link quality metrics. Next, two supervised learning classification algorithms are designed to exploit information collected from packets transmitted and received over standard links in real time: database learning with nearest neighbor classifiers and support vector machines. Algorithms are also proposed to preserve diversity of feature sets in the database and to allow learning algorithms to seek out more information about the network. Finally, link adaptation with supervised learning is applied to MIMO-OFDM systems where the modulation order may be adapted per-stream. This leads to the analysis of the ordered SNR per stream and its connection to the cumulative distribution function of SNR on each stream. Decoupled link adaptation algorithms, which significantly reduce the complexity of non-uniform link adaptation algorithms, are proposed. New analysis of non-uniform link adaptation shows that the performance of decoupled link adaptation algorithms converge to the performance of joint (optimal) link adaptation algorithms as the number of modulation and coding options per-stream increase. This guides the construction of future standards to reduce the complexity of link adaptation in MIMO-OFDM.Show more Item New signal processing approaches to peak-to-average power ratio reduction in multicarrier systems(2010-08) Bae, Ki-taek; Andrews, Jeffrey G.; Powers, Edward J.; Driga, Mircea; Vikalo, Haris; Lee, JackShow more Multi-carrier systems based on orthogonal frequency division multiplexing (OFDM) are efficient technologies for the implementation of broadband wireless communication systems. OFDM is widely used and has been adopted for current mobile broadband wireless communication systems such as IEEE 802.a/g wireless LANs, WiMAX, 3GPP LTE, and DVB-T/H digital video broadcasting systems. Despite their many advantages, however, OFDM-based systems suffer from potentially high peak-to-average power ratio (PAR). Since communication systems typically include nonlinear devices such as RF power amplifiers (PA) and digital-to-analog converters (DAC), high PAR results in increased symbol error rates and spectral radiation. To mitigate these nonlinear effects and to avoid nonlinear saturation effects of the PA, the operating point of a signal with high peak power must be backed off into the linear region of the PA. This so-called output backoff (OBO) results in a reduced power conversion efficiency which limits the battery life for mobile applications, reduces the coverage range, and increases both the cost of the PA and power consumption in the cellular base station. With the increasing demand for high energy efficiency, low power consumption, and greenhouse gas emission reduction, PAR reduction is a key technique in the design of practical OFDM systems. Motivated by the PAR reduction problem associated with multi-carrier systems, such as OFDM, this research explores the state of the art of PAR reduction techniques and develops new signal processing techniques that can achieve a minimum PAR for given system parameters and that are compatible with the appropriate standards. The following are the three principal contributions of this dissertation research. First, we present and derive the semi-analytical results for the output of asymptotic iterative clipping and filtering. This work provides expressions and analytical techniques for estimating the attenuation factor, error vector magnitude, and bit-error-rate (BER), using a noise enhancement factor that is obtained by simulation. With these semi-analytical results, we obtain a relationship between the BER and the target clipping level for asymptotic iterative clipping and filtering. These results serve as a performance benchmark for designing PAR reduction techniques using iterative clipping and filtering in OFDM systems. Second, we analyze the impact of the selected mapping (SLM) technique on BER performance of OFDM systems in an additive white Gaussian noise channel in the presence of nonlinearity. We first derive a closed-form expression for the envelope power distribution in an OFDM system with SLM. Then, using this derived envelope power distribution, we investigate the BER performance and the total degradation (TD) of OFDM systems with SLM under the existence of nonlinearity. As a result, we obtain the TD-minimizing peak backoff (PBO) and clipping ratio as functions of the number of candidate signals in SLM. Third, we propose an adaptive clipping control algorithm and pilotaided algorithm to address a fundamental issue associated with two lowcomplexity PAR reduction techniques, namely, tone reservation (TR) and active constellation extension (ACE). Specifically, we discovered that the existing low-complexity algorithms have a low clipping ratio problem in that they can not achieve the minimum PAR when the target clipping level is set below the initially unknown optimum value. Using our proposed algorithms, we overcome this problem and demonstrate that additional PAR reduction is obtained for any low value of the initial target clipping ratio.Show more Item On adaptive transmission, signal detection and channel estimation for multiple antenna systems(Texas A&M University, 2004-11-15) Xie, YongzheShow more This research concerns analysis of system capacity, development of adaptive transmission schemes with known channel state information at the transmitter (CSIT) and design of new signal detection and channel estimation schemes with low complexity in some multiple antenna systems. We first analyze the sum-rate capacity of the downlink of a cellular system with multiple transmit antennas and multiple receive antennas assuming perfect CSIT. We evaluate the ergodic sum-rate capacity and show how the sum-rate capacity increases as the number of users and the number of receive antennas increases. We develop upper and lower bounds on the sum-rate capacity and study various adaptive MIMO schemes to achieve, or approach, the sum-rate capacity. Next, we study the minimum outage probability transmission schemes in a multiple-input-single-output (MISO) flat fading channel assuming partial CSIT. Considering two special cases: the mean feedback and the covariance feedback, we derive the optimum spatial transmission directions and show that the associated optimum power allocation scheme, which minimizes the outage probability, is closely related to the target rate and the accuracy of the CSIT. Since CSIT is obtained at the cost of feedback bandwidth, we also consider optimal allocation of bandwidth between the data channel and the feedback channel in order to maximize the average throughput of the data channel in MISO, flat fading, frequency division duplex (FDD) systems. We show that beamforming based on feedback CSI can achieve an average rate larger than the capacity without CSIT under a wide range of mobility conditions. We next study a SAGE-aided List-BLAST detection scheme for MIMO systems which can achieve performance close to that of the maximum-likelihood detector with low complexity. Finally, we apply the EM and SAGE algorithms in channel estimation for OFDM systems with multiple transmit antennas and compare them with a recently proposed least-squares based estimation algorithm. The EM and SAGE algorithms partition the problem of estimating a multi-input channel into independent channel estimation for each transmit-receive antenna pair, therefore avoiding the matrix inversion encountered in the joint least-squares estimation.Show more Item Relay-aided communications with partial channel state information(2011-08) Yazdan Panah, Ali; Heath, Robert W., Ph. D.; Evans, Brian L.; Hasenbein, John; Vikalo, Haris; Andrews, Jeffrey G.Show more Modern wireless communication systems strive to enable communications at high data rates, over wide geographical areas, and to multiple users. Unfortunately, this can be a daunting task in practice, as natural laws governing the wireless medium may hinder point-to-point transmissions. Communications over large distances (path loss), and physical obstructions in line-of-sight signals (shadowing) are prime examples of such impediments. One promising solution is to deploy intermediary terminals to help reestablish such broken point-to-point communication links. Such terminals are called relay nodes, and the corresponding systems are referred to as being relay-aided. As in the case of point-to-point communication, design of efficient transmission and reception techniques in relay-aided systems depends on the availability of propagational channel state information. In practice, such information is only accurate to a certain degree which is governed by overhead constraints, feedback delay, and channel fluctuations due to mobility. Understanding the impacts of such partial channel state information, and devising transmission and reception methods based on such understandings, is the main topic of this dissertation. The transmission protocol classifies relays as either one-way, where the relay receives signals from one terminal, or two-way, where the relay receives signals from more than one terminal. Designs and solutions for both one- and two-way relaying systems are presented in this dissertation. Emphasis is placed on two-way relaying systems given their superior efficiency in utilizing channel resources. For one-way relaying this dissertation presents power loading strategies for multiuser-multicast systems derived based on the availability of full or partial channel state information at the terminals. In the case of two-way relaying, both single and multi-user systems are analyzed. For single-user two-way relaying, this dissertation presents optimal methods of acquiring partial channel state information via pilot-aided channel estimation methods. This includes an analysis of the effects of channel estimation upon the system sum-rate. Also, the design of channel equalizers exhibiting robustness to partial channel state information is proposed. For multi-user two-way relaying, this dissertation presents several precoding strategies at the relay terminal(s) to combat the effects co-channel interference in light of the existence of self-interference inherent to two-way relaying operations.Show more Item Sensitivity of OFDM Systems to Synchronization Errors and Spatial Diversity(2012-02-14) Zhou, YiShow more In this dissertation, the problem of synchronization for OFDM-based wireless communication systems is studied. In the first part of this dissertation, the sensitivity of both single input single output (SISO) OFDM and multiple input multiple output (MIMO) OFDM receivers to carrier and timing synchronization errors are analyzed. Analytical expressions and numerical results for the power of inter-carrier interference (ICI) are presented. It is shown that the OFDM-based receivers are quite sensitive to residual synchronization errors. In wide-sense stationary uncorrelated scattering (WSSUS) frequency-selective fading channels, the sampling clock timing offset results in rotation of the subcarrier constellation, while carrier frequency offsets and phase jitter cause inter-carrier interference. The overall system performance in terms of symbol error rate is limited by the inter-carrier interference. For a reliable information reception, compensatory measures must be taken. The second part of this dissertation deals with the impact of spatial diversity (usage of multiple transmit/receive antennas) on synchronization. It is found that with multiple transmit and receive antennas, MIMO-OFDM systems can take advantage of the spatial diversity to combat carrier and timing synchronization imperfections. Diversity can favorably improve the synchronization performance. Data-aided and non-data-aided maximum likelihood symbol timing estimators for MIMO-OFDM systems are introduced. Computer simulations show that, by exploiting the spatial diversity, synchronization performance of MIMO-OFDM systems in terms of mean squared error (MSE) of residual timing offset becomes significantly more reliable when compared to conventional SISO OFDM systems. Therefore, spatial diversity is a useful technique to be exploited in the deployment of MIMO-OFDM communication systems. In MIMO systems with synchronization sequences, timing synchronization is treated as a multiple hypotheses testing problem. Generalized likelihood ratio test (GLRT) statistics are developed for MIMO systems in frequency flat channels and MIMO-OFDM systems in frequency selective fading environments. The asymptotic performance of the GLRT without nuisance parameters is carried out. It is shown that the asymptotic performance of the GLRT can serve as an upper bound for the detection probability in the presence of a limited number of observations as well as a benchmark for comparing the performances of different timing synchronizers.Show more