Browsing by Subject "Heat Transfer"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
Item A Reduced-Order Model of a Chevron Plate Heat Exchanger for Rapid Thermal Management by Using Thermo-Chemical Energy Storage(2012-10-19) Niedbalski, NicholasThe heat flux demands for electronics cooling applications are quickly approaching the limits of conventional thermal management systems. To meet the demand of next generation electronics, a means for rejecting high heat fluxes at low temperatures in a compact system is an urgent need. To answer this challenge, in this work a gasketed chevron plate heat exchanger in conjunction with a slurry consisting of highly endothermic solid ammonium carbamate and a heat transfer fluid. A reduced-order 1-dimensional model was developed and used to solve the coupled equations for heat, mass, and momentum transfer. The feasibility of this chosen design for satisfying the heat rejection load of 2kW was also explored in this study. Also, a decomposition reaction using acetic acid and sodium bicarbonate was conducted in a plate heat exchanger (to simulate a configuration similar to the ammonium carbamate reactions). This enabled the experimental validation of the numerical predictions for the momentum transfer correlations used in this study (which in turn, are closely tied to both the heat transfer correlations and chemical kinetics models). These experiments also reveal important parameters of interest that are required for the reactor design. A numerical model was developed in this study and applied for estimating the reactor size required for achieving a power rating of 2 kW. It was found that this goal could be achieved with a plate heat exchanger weighing less than 70 kg (~100 lbs) and occupying a volume of 29 L (which is roughly the size of a typical desktop printer). Investigation of the hydrodynamic phenomena using flow visualization studies showed that the flow patterns were similar to those described in previous studies. This justified the adaptation of empirical correlations involving two-phase multipliers that were developed for air-water two-phase flows. High-speed video confirmed the absence of heterogeneous flow patterns and the prevalence of bubbly flow with bubble sizes typically less than 0.5 mm, which justifies the use of homogenous flow based correlations for vigorous gas-producing reactions inside a plate heat exchanger. Absolute pressure measurements - performed for experimental validation studies - indicate a significant rise in back pressure that are observed to be several times greater than the theoretically estimated values of frictional and gravitational pressure losses. The predictions from the numerical model were found to be consistent with the experimental measurements, with an average absolute error of ~26%Item An assessment of least squares finite element models with applications to problems in heat transfer and solid mechanics(Texas A&M University, 2008-10-10) Pratt, Brittan SheldonResearch is performed to assess the viability of applying the least squares model to one-dimensional heat transfer and Euler-Bernoulli Beam Theory problems. Least squares models were developed for both the full and mixed forms of the governing one-dimensional heat transfer equation along weak form Galerkin models. Both least squares and weak form Galerkin models were developed for the first order and second order versions of the Euler-Bernoulli beams. Several numerical examples were presented for the heat transfer and Euler- Bernoulli beam theory. The examples for heat transfer included: a differential equation having the same form as the governing equation, heat transfer in a fin, heat transfer in a bar and axisymmetric heat transfer in a long cylinder. These problems were solved using both least squares models, and the full form weak form Galerkin model. With all four examples the weak form Galerkin model and the full form least squares model produced accurate results for the primary variables. To obtain accurate results with the mixed form least squares model it is necessary to use at least a quadratic polynominal. The least squares models with the appropriate approximation functions yielde more accurate results for the secondary variables than the weak form Galerkin. The examples presented for the beam problem include: a cantilever beam with linearly varying distributed load along the beam and a point load at the end, a simply supported beam with a point load in the middle, and a beam fixed on both ends with a distributed load varying cubically. The first two examples were solved using the least squares model based on the second order equation and a weak form Galerkin model based on the full form of the equation. The third problem was solved with the least squares model based on the second order equation. Both the least squares model and the Galerkin model calculated accurate results for the primary variables, while the least squares model was more accurate on the secondary variables. In general, the least-squares finite element models yield more acurate results for gradients of the solution than the traditional weak form Galkerkin finite element models. Extension of the present assessment to multi-dimensional problems and nonlinear provelms is awaiting attention.Item Heat Transfer Enhancement in Rectangular Channel with Compound Cooling Techniques(2013-11-27) Krad, BelalVarious compound internal cooling techniques were investigated in this experiment to see which combinations can offer the greatest heat transfer. Combinations of rib turbulators as well as pin0fins were used in different configurations in order to analyze heat transfer and pressure loss characteristics to determine which configuration had the overall best performance. Two different flow configurations were considered, a uniform channel flow setup as well as a jet impingement setup. There were a total of sixteen cases performed for the experiment, eight for the channel flow and eight for the jet impingement. The types of cases that were performed were: a smooth surface case, two cases of only copper rib turbulators (P/e ratios of 5 and 10), two cases of only copper pin0fins (P/e ratios of 5 and 10), and three cases of a combinations of copper rib turbulators and pin0fins (P/e ratios of 2.5, 5, and 10). All of the cases were performed at four different Reynolds numbers to explore the effect of Reynolds number on the heat transfer. In terms of the channel flow experiment, the results indicate that the all ribs case with a P/e ratio of 5 had the highest heat transfer coefficients but also produced the highest friction factor. If the total area is considered and not just the projected area, than the case of all pins P/e ratio of 10 is the best candidate due to its extensively low pressure drop and moderate heat transfer. In terms of the jet impingement experiment, none of the cases significantly enhanced heat transfer and many of them had results lower than the smooth case. The case of all pins P/e ratio of 5 performed the best out of all the rough cases but the case of all pins P/e ratio of 10 perform the best when taking into account the total surface area. Cross0flow contributed to the jet impingement results, lowering the local Nusselt number due to the bending of the jet beams in the low x/d regions but started increasing the local Nusselt number at further x/d due to the cross flow heat transfer.Item Heat transfer in leading and trailing edge cooling channels of the gas turbine blade under high rotation numbers(2009-05-15) Liu, Yao-HsienThe gas turbine blade/vane internal cooling is achieved by circulating the compressed air through the cooling passages inside the turbine blade. Leading edge and trailing edge of the turbine blade are two critical regions which need to be properly cooled. Leading edge region receives extremely hot mainstream flow and high heat transfer enhancement is required. Trailing edge region usually has narrow shaped geometry and applicable cooling techniques are restricted. Heat transfer will be investigated in the leading edge and trailing edge cooling channels at high rotation numbers close to the engine condition. Heat transfer and pressure drop has been investigated in an equilateral triangular channel (Dh=1.83cm) to simulate the cooling channel near the leading edge of the gas turbine blade. Three different rib configurations (45?, inverted 45?, and 90?) were tested at four different Reynolds numbers (10000-40000), each with five different rotational speeds (0-400 rpm). By varying the Reynolds numbers (10000-40000) and the rotational speeds (0-400 rpm), the rotation number and buoyancy parameter reached in this study were 0-0.58 and 0-2.3, respectively. 45? angled ribs show the highest thermal performance at stationary condition. 90? ribs have the highest thermal performance at the highest rotation number of 0.58. Heat transfer coefficients are also experimentally measured in a wedge-shaped cooling channel (Dh =2.22cm, Ac=7.62cm2) to model an internal cooling passage near the trailing edge of a gas turbine blade where the coolant discharges through the slot to the mainstream flow. Tapered ribs are put on the leading and trailing surfaces with an angle of attack of 45?. The ribs are parallel with staggered arrangement on opposite walls. The inlet Reynolds number of the coolant varies from 10,000 to 40,000 and the rotational speeds varies from 0 to 500 rpm. The inlet rotation number is from 0 - 1.0. The local rotation number and buoyancy parameter are determined by the rotational speeds and the local Reynolds number at each region. Results show that heat transfer is high near the regions where strong slot ejection exists. Both the rotation number and buoyancy parameter have been correlated to predict the rotational heat transfer enhancement.Item Heat Transfer of a Multiple Helical Coil Heat Exchanger Using a Microencapsulated Phase Change Material Slurry(2012-02-14) Gaskill, TravisThe present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat transfer. An experimental study was conducted using a counterflow CHE consisting of 3 helical coils. Two separate tests were conducted, one where water was used as heat transfer fluid (HTF) on the coil and shell sides, respectively; while the second one made use of MPCM slurry and water on the coil and shell sides, respectively. The NTU-effectiveness relationship of the CHE when MPCM fluid is used approaches that of a heat exchanger with a heat capacity ratio of zero. The heat transfer results have shown that when using a MPCM slurry, an increase in heat transfer rate can be obtained when compared to heat transfer results obtained using straight heat transfer sections. It has been concluded that the increased specific heat of the slurry as well as the fluid dynamics in helical coil pipes are the main contributors to the increased heat transfer.Item Massively-Parallel Direct Numerical Simulation of Gas Turbine Endwall Film-Cooling Conjugate Heat Transfer(2011-02-22) Meador, Charles MichaelImprovements to gas turbine efficiency depend closely on cooling technologies, as efficiency increases with turbine inlet temperature. To aid in this process, simulations that consider real engine conditions need to be considered. The first step towards this goal is a benchmark study using direct numerical simulations to consider a single periodic film cooling hole that characterizes the error in adiabatic boundary conditions, a common numerical simpliflication. Two cases are considered: an adiabatic case and a conjugate case. The adiabatic case is for validation to previous work conducted by Pietrzyk and Peet. The conjugate case considers heat transfer in the solid endwall in addition to the fluid, eliminating any simplified boundary conditions. It also includes an impinging jet and plenum, typical of actual endwall configurations. The numerical solver is NEK5000 and the two cases were run at 504 and 128 processors for the adiabatic and conjugate cases respectively. The approximate combined time is 100,000 CPU hours. In the adiabatic case, the results show good agreement for average velocity profiles but over prediction of the film cooling effectiveness. A convergence study suggests that there may be an area of unresolved flow, and the film cooling momentum flux may be too high. Preliminary conjugate results show agreement with velocity profiles, and significant differences in cooling effectiveness. Both cases will need to be refined near the cooling hole exit, and another convergence study done. The results from this study will be used in a larger case that considers an actual turbine vane and film cooling hole arrangement with real engine conditions.Item Natural Convection and Radiation in Small Enclosures with a Non-Attached Obstruction(Texas A&M University, 2004-09-30) Lloyd, Jimmy LynnNumerical simulations were used to investigate natural convection and radiation interactions in small enclosures of both two and three-dimensional geometries. The objectives of the research were to (1) determine the relative importance of natural convection and radiation, and to (2) estimate the natural convection heat transfer coefficients. Models are generated using Gambit, while numerical computations were conducted using the CFD code FLUENT. Dimensions for the two-dimensional enclosure were a height of 2.54 cm (1 inch), and a width that varied between 5.08 cm and 10.16 cm (2 inches and 4 inches). The three-dimensional model had a depth of 5.08 cm (2 inches) with the same height and widths as the two-dimensional model. The obstruction is located at the centroid of the enclosure and is represented as a circle in the two-dimensional geometry and a cylinder in the three-dimensional geometry. Obstruction diameters varied between .51 cm and 1.52 cm (0.2 inches and 0.6 inches). Model parameters used in the investigation were average surface temperatures, net total heat flux, and net radiation heat flux. These parameters were used to define percent temperature differences, percent heat flux contributions, convective heat transfer coefficients, Nusselt numbers, and Rayleigh numbers. The Rayleigh numbers varied between 0.005 and 300, and the convective heat transfer coefficients ranged between 2 and 25 W/m2K depending on the point in the simulation. The simulations were conducted with temperatures ranging between 310 K and 1275 K on the right boundary. For right boundary temperatures above 800 K, the estimated error on the obstruction temperature is less than 6.1% for neglecting natural convection and conduction from the heat transfer analysis. Lower right boundary temperatures such as 310 K had significant contributions, over 50%, from heat transfer modes other than radiation. For lower right boundary temperatures, a means of including natural convection should be included. When a bulk fluid temperature and average surface temperature values are available, a time average heat transfer coefficient of 6.73 W/m2K is proposed for simplifying the numerical calculations. In the transient right boundary temperature analysis, all modes of heat transfer other than radiation can be neglected to have an error below 8.1%.Item Numerical Investigation of Flow and Heat Transfer Characteristics in Rectangular Channels (AR=4:1) with Circular and Elliptical Pin Fin Arrays(2012-07-16) Velichala, AbhishekThe objective of current study was to numerically investigate the flow and heat transfer characteristics in a stationary one pass rectangular channel (AR=4:1) with circular and elliptical pin fin arrays. Two types of elliptical pin fins (a SEF and an N fin whose minor axis length is equal to the diameter of the circular fin) were used. The analysis was performed with an array of six rows of staggered pin fins in the streamwise direction for Reynolds numbers (Re) of 10,000, 20,000, 30,000, 40,000 and 50,000. 3-D, steady simulations were performed using the low Reynolds number k-omega SST turbulence model in the FLUENT CFD code. The data predicted by the current numerical model showed favorable agreement with the experiments in the validation study. It was observed that SEF array produces minimum pressure loss and the highest thermal performance. It was also observed that N fin array produces minimum hot spots and the highest channel averaged Nusselt number ratio values.Item Numerical simulation of flow and heat transfer of internal cooling passage in gas turbine blade(Texas A&M University, 2007-04-25) Su, GuoguangA computational study of three-dimensional turbulent flow and heat transfer was performed in four types of rotating channels. The first type is a rotating rectangular channel with V-shaped ribs. The channel aspect ratio (AR) is 4:1, the rib height-to-hydraulic diameter ratio (e/Dh) is 0.078 and the rib pitch-to-height ratio (P/e) is 10. The rotation number and inlet coolant-to-wall density ratio were varied from 0.0 to 0.28 and from 0.122 to 0.40, respectively, while the Reynolds number was varied from 10,000 to 500,000. Three channel orientations (90 degrees, -135 degrees, and 135 degrees from the rotation direction) were also investigated. The second type is a rotating rectangular channel with staggered arrays of pinfins. The channel aspect ratio (AR) is 4:1, the pin length-to-diameter ratio is 2.0, and the pin spacing-to-diameter ratio is 2.0 in both the stream-wise and span-wise directions. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.20, respectively, while the Reynolds number varied from 10,000 to 100,000. For the rotating cases, the rectangular channel was oriented at 150 degrees with respect to the plane of rotation. In the rotating two-pass rectangular channel with 45-degree rib turbulators, three channels with different aspect ratios (AR=1:1; AR=1:2; AR=1:4) were investigated. Detailed predictions of mean velocity, mean temperature, and Nusselt number for two Reynolds numbers (Re=10,000 and Re=100,000) were carried out. The rib height is fixed as constant and the rib-pitch-to-height ratio (P/e) is 10, but the rib height-to-hydraulic diameter ratios (e/Dh) are 0.125, 0.094, and 0.078, for AR=1:1, AR=1:2, and AR=1:4 channels, respectively. The channel orientations are set as 90 degrees, the rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.13 to 0.40, respectively. The last type is the rotating two-pass smooth channel with three aspect ratios (AR=1:1; AR=1:2; AR=1:4). Detailed predictions of mean velocity, mean temperature and Nusselt number for two Reynolds numbers (Re=10,000 and Re=100,000) were carried out. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.13 to 0.40, respectively. A multi-block Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure.Item Parametric Study of Gas Turbine Film-Cooling(2012-10-19) Liu, KevinIn this study, the film-cooling effectiveness in different regions of gas turbine blades was investigated with various film hole/slot configurations and mainstream flow conditions. The study consisted of three parts: 1) turbine blade span film-cooling, 2) turbine platform film-cooling, and 3) blade tip film-cooling. Pressure sensitive paint (PSP) technique was used to get the conduction-free film-cooling effectiveness distribution. Film-cooling effectiveness is assessed in terms of cooling hole geometry, blowing ratio, freestream turbulence, and coolant-to-mainstream density ratio. Blade span film-cooling test shows that the compound angle shaped holes offer better film effectiveness than the axial shaped holes. Greater coolant-to-mainstream density ratio prevents coolant to lift-off. Higher freestream turbulence causes effectiveness to drop everywhere except in the region downstream of suction side. Results are also correlated with momentum flux, compound shaped hole has the greatest optimum momentum flux ratio, and then followed by axial shaped hole, compound cylindrical hole, and axial cylindrical hole. For platform purge flow cooling, the stator-rotor gap was simulated by a typical labyrinth-like seal. Two different film-cooling hole geometries, three blowing ratios and density ratios, and two freestream turbulence are examined. Results showed that the shaped holes present higher film-cooling effectiveness and wider film coverage than the cylindrical holes, particularly at higher blowing ratios. Moreover, the platform film-cooling effectiveness increases with density ratio but decreases with turbulence intensity. The blade tip study was performed in a blow-down flow loop. Results show that a blowing ratio of 2.0 is found to give best results on the tip floor. Lift-off of the coolant jet can be observed for the holes closer to the leading edge as blowing ratio increases from 1.5 to 2.0. A stator vane suction side heat transfer study was conducted in a partial annular cascade. The heat transfer coefficients were measured by using the transient liquid crystal technique. At X/L=0.15, a low heat transfer region where transition occurs. The heat transfer coefficients increase toward the trailing edge as flow accelerates; a spanwise variation can be found at neat tip and hub portions due to passage and horseshoe vortices.Item Structural design and analysis of a lightweight composite sandwich space radiator panel(Texas A&M University, 2005-02-17) Mukundan, SudharsanThe goal of this study is to design and analyze a sandwich composite panel with lightweight graphite foam core and carbon epoxy face sheets that can function as a radiator for the given payload in a satellite. This arrangement provides a lightweight, structurally efficient structure to dissipate the heat from the electronics box to the surroundings. Three-dimensional finite element analysis with MSC Visual Nastran is undertaken for modal, dynamic and heat transfer analysis to design a radiator panel that can sustain fundamental frequency greater than 100 Hz and dissipate 100 W/m2 and withstand launch loads of 10G. The primary focus of this research is to evaluate newly introduced graphite foam by Poco Graphite Inc. as a core in a sandwich structure that can satisfy structural and thermal design requirements. The panel is a rectangular plate with a cutout that can hold the antenna. The panel is fixed on all the sides. The objective is not only to select an optimum design configuration for the face sheets and core but also to explore the potential of the Poco foam core in its heat transfer capacity. Furthermore the effects of various parameters such as face sheet lay-up, orientation, thickness and material properties are studied through analytical models to validate the predictions of finite element analysis. The optimum dimensions of the sandwich panel are determined and structural and thermal response of the Poco foam is compared with existing aluminum honeycomb core.Item The Temperature Prediction in Deepwater Drilling of Vertical Well(2012-07-16) Feng, MingThe extreme operating conditions in deepwater drilling lead to serious relative problems. The knowledge of subsea temperatures is of prime interest to petroleum engineers and geo-technologists alike. Petroleum engineers are interested in subsea temperatures to better understand geo-mechanisms; such as diagenesis of sediments, formation of hydrocarbons, genesis and emplacement of magmatic formation of mineral deposits, and crustal deformations. Petroleum engineers are interested in studies of subsurface heat flows. The knowledge of subsurface temperature to properly design the drilling and completion programs and to facilitate accurate log interpretation is necessary. For petroleum engineers, this knowledge is valuable in the proper exploitation of hydrocarbon resources. This research analyzed the thermal process in drilling or completion process. The research presented two analytical methods to determine temperature profile for onshore drilling and numerical methods for offshore drilling during circulating fluid down the drillstring and for the annulus. Finite difference discretization was also introduced to predict the temperature for steady-state in conventional riser drilling and riserless drilling. This research provided a powerful tool for the thermal analysis of wellbore and rheology design of fluid with Visual Basic and Matlab simulators.