# Browsing by Subject "Distributed algorithms"

Now showing 1 - 2 of 2

###### Results Per Page

###### Sort Options

Item On a class of distributed algorithms over networks and graphs(2011-05) Lee, Sang Hyun, 1977-; Vishwanath, Sriram; Vikalo, Haris; Powers, Edward J.; Ghosh, Joydeep; Sanghavi, Sujay; Qiu, LiliShow more Distributed iterative algorithms are of great importance, as they are known to provide low-complexity and approximate solutions to what are otherwise high-dimensional intractable optimization problems. The theory of message-passing based algorithms is fairly well developed in the coding, machine learning and statistical physics literatures. Even though several applications of message-passing algorithms have already been identified, this work aims at establishing that a plethora of other applications exist where it can be of great importance. In particular, the goal of this work is to develop and demonstrate applications of this class of algorithms in network communications and computational biology. In the domain of communications, message-passing based algorithms provide distributed ways of inferring the optimal solution without the aid of a central agent for various optimization problems that happen in the resource allocation of communication networks. Our main framework is Affinity Propagation (AP), originally developed for clustering problems. We reinterpret this framework to unify the development of distributed algorithms for discrete resource allocation problems. Also, we consider a network-coded communication network, where continuous rate allocation is studied. We formulate an optimization problem with a linear cost function, and then utilize a Belief Propagation (BP) approach to determine a decentralized rate allocation strategy. Next, we move to the domain of computational biology, where graphical representations and computational biology play a major role. First, we consider the motif finding problem with several DNA sequences. In effect, this is a sequence matching problem, which can be modeled using various graphical representations and also solved using low-complexity algorithms based on message-passing techniques. In addition, we address the application of message-passing algorithms for a DNA sequencing problem where the one dimensional structure of a single DNA sequence is identified. We reinterpret the problem as being equivalent to the decoding of a nonlinear code. Based on the iterative decoding framework, we develop an appropriate graphical model which enables us to derive a message-passing algorithm to improve the performance of the DNA sequencing problem. Although this work consists of disparate application domains of communications, networks and computational biology, graphical models and distributed message-passing algorithms form a common underlying theme.Show more Item Source and channel aware resource allocation for wireless networks(2011-08) Jose, Jubin; Vishwanath, Sriram; Andrews, Jeffrey G.; Shakkottai, Sanjay; de Veciana, Gustavo; Morton, DavidShow more Wireless networks promise ubiquitous communication, and thus facilitate an array of applications that positively impact human life. At a fundamental level, these networks deal with compression and transmission of sources over channels. Thus, accomplishing this task efficiently is the primary challenge shared by these applications. In practice, sources include data and video while channels include interference and relay networks. Hence, effective source and channel aware resource allocation for these scenarios would result in a comprehensive solution applicable to real-world networks. This dissertation studies the problem of source and channel aware resource allocation in certain scenarios. A framework for network resource allocation that stems from rate-distortion theory is presented. Then, an optimal decomposition into an application-layer compression control, a transport-layer congestion control and a network-layer scheduling is obtained. After deducing insights into compression and congestion control, the scheduling problem is explored in two cross-layer scenarios. First, appropriate queue architecture for cooperative relay networks is presented, and throughput-optimality of network algorithms that do not assume channel-fading and input-queue distributions are established. Second, decentralized algorithms that perform rate allocation, which achieve the same overall throughput region as optimal centralized algorithms, are derived. In network optimization, an underlying throughput region is assumed. Hence, improving this throughput region is the next logical step. This dissertation addresses this problem in the context of three significant classes of interference networks. First, degraded networks that capture highly correlated channels are explored, and the exact sum capacity of these networks is established. Next, multiple antenna networks in the presence of channel uncertainty are considered. For these networks, robust optimization problems that result from linear precoding are investigated, and efficient iterative algorithms are derived. Last, multi-cell time-division-duplex systems are studied in the context of corrupted channel estimates, and an efficient linear precoding to manage interference is developed.Show more