Schneider, Erich A.2012-09-042017-05-112012-09-042017-05-112008-08http://hdl.handle.net/2152/17763textRadiation causes performance degradation in electronics by inducing atomic displacements and ionizations. While radiation hardened components are available, non-radiation hardened electronics can be preferable because they are generally more compact, require less power, and less expensive than radiation tolerant equivalents. It is therefore important to characterize the performance of electronics, both hardened and non-hardened, to prevent costly system or mission failures. Radiation effects tests for electronics generally involve a handful of step irradiations, leading to poorly-resolved data. Step irradiations also introduce uncertainties in electrical measurements due to temperature annealing effects. This effect may be intensified if the time between exposure and measurement is significant. Induced activity in test samples also complicates data collection of step irradiated test samples. The University of Texas at Austin operates a 1.1 MW Mark II TRIGA research reactor. An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the UT TRIGA reactor. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This dissertation describes the design and testing of the large in-core irradiation facility and the experimental campaign developed to test the real-time monitoring capability. This irradiation campaign was performed to test the real-time monitoring capability at various reactor power levels. The device chosen for characterization was the 4N25 general-purpose optocoupler. The current transfer ratio, which is an important electrical parameter for optocouplers, was calculated as a function of neutron fluence and gamma dose from the real-time voltage measurements. The resultant radiation effects data was seen to be repeatable and exceptionally finely-resolved. Therefore, the capability at UT TRIGA has been proven competitive with world-class effects characterization facilities.electronicengCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.Electronic apparatus and appliances--Effect of radiation on--TestingDesign and characterization of an irradiation facility with real-time monitoring