Green, Peter F. (Peter Fitzroy)Ganesan, Venkat2438661372008-08-292017-05-112008-08-292017-05-112008-05http://hdl.handle.net/2152/3913textThe properties of polymers, thin films or bulk, are profoundly influenced by interactions at interfaces with dissimilar materials. Thin, supported, polymer films are subject to interfacial instabilities, due largely to competing intermolecular forces, that cause them to rupture and dewet the substrate. The addition of nanoparticles (such as clay sheets, metallic or semiconductor nanocrystals, carbon nanotubes, etc.) to polymers can substantially affect bulk properties, such as the glass transition and viscosity, and influence the processability of the material. In this dissertation, we contribute to a fundamental understanding of the role of interfacial interactions on both the instabilities exhibited by polymer thin films and the properties displayed by polymer-nanoparticle mixtures. While conditions under which the destabilization of compositionally homogeneous thin films occurs are relatively well understood, the mechanisms of film stabilization in many two-component thin film systems are still unresolved. We demonstrate that the addition of a miscible component to an unstable film can provide an effective means of stabilization. The details of the stabilization mechanism are understood in terms of the compositional dependence of both the macroscopic wetting parameters and the effective interface potential for the system. We find that the suppression of dewetting in the system is not an equilibrium stabilization process and propose a mechanism by which the increased resistance to dewetting may occur. There is also significant interest in understanding the extraordinary property enhancement of polymers that are enabled by the addition of only small concentrations of nanoparticles. If these effects could be distilled down to a few simple rules, they could be exploited in the design of materials for specific applications. In this work, the influence of C60 nanoparticles on the bulk dynamical properties of three polymers is examined. Based on the findings from a range of measurement techniques, including differential scanning calorimetry, dynamic mechanical analysis, dynamic rheology and neutron scattering, we propose that the changes in the glass transition temperature for the polymer-Cā‚†ā‚€ mixtures can be understood in terms of a percolation interpretation of the glass transition. The proposed mechanism is also characterized computationally.electronicengCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.Polymers--StabilityPolymers--PropertiesInterfaces (Physical sciences)Thin films--StabilityNanoparticlesGlass transition temperaturePolymer behavior under the influence of interfacial interactionsThesis