Banerjee, Sanjay2012-10-162017-05-112012-10-162017-05-112009-05http://hdl.handle.net/2152/18388textThis document details experiments attempting to increase the performance of metal-oxide-semiconductor field-effect-transistors (MOSFETs) which are the mainstay of the semiconductor industry. Replacing the silicon channel with an ultra-thin epitaxial germanium layer grown selectively on a silicon (100) bulk wafer is examined in detail. The gate oxide chosen for the germanium devices is a high-k gate oxide, HfO2, and the gate electrode is a metal gate, tantalum-nitride. They demonstrate large improvements in drive current and mobility over identically processed silicon PMOSFETs. In addition to the planar germanium PMOSFETs, a process has been developed for 50nm and smaller germanium P-finFETs and N and P germanium tunnel-FETs. The patterning of sub-30nm wide and 230nm tall three dimensional fins has been done with electron beam lithography and dry plasma etching. The processes to deposit high-k gate oxide and metal gates on the sub-30nm wide fins have been developed. All that remains for the production of these devices is electron beam lithography with a maximum misalignment error of 40nm.electronicengCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.Metal oxide semiconductor field-effect transistorsGermanium compoundsGate array circuitsMetal-oxide-semiconductor devices based on epitaxial germanium layers grown selectively directly on silicon substrates by ultra-high-vacuum chemical vapor deposition