Fisher, W. L. (William Lawrence), 1932-2013-10-292017-05-112017-05-112013-05May 2013http://hdl.handle.net/2152/21781textThe objective of this thesis is to analyze the considerations regarding the environmental impacts of shale gas development by a rational, objective, fact-based assessment. Flowback and produced water from shale gas development can be treated with the related technologies on-site or off-site for recycling, reuse, discharge, and disposal. However, more efficient technologies should be researched even though current levels are high. Besides, the amount of water used in shale gas development is generally lower than that of other energy sources and most shale gas plays are located in areas with moderate to high levels of annual precipitation. However, growing populations, other industrial water demands, and seasonal variation in precipitation should be considered during shale gas development. Groundwater contamination is directly connected to the integrity of the well casing, not hydraulic fracturing, because there are significant spacious gap and several impermeable layers between target formations and ground water zones. Hydraulic fracturing rarely creates unwanted induced seismicity because the seismic energy created from hydraulic fracturing is too low to be detected in the surface, compared to the waste injection well.application/pdfen-USShale gas developmentGroundwaterAnalysis of the potential impacts of shale gas development2013-10-29