Downer, Michael1663318772008-08-282008-08-282007http://hdl.handle.net/2152/2999textIn this work we apply femtosecond (fs) microscopy to a solid target (aluminum and copper) irradiated at relativistic intensity (Ipu ≥ 2 × 1018 W/cm2 ) by high-contrast (≥ 1 : 10−9 ), obliquely-incident (θ inc pu = 45◦ ), P- and S-polarized pump pulses (λpu = 0.8 µm, 35 fs) focused to a wavelength-scale spot size (w0 = 0.8 µm). Under these conditions, radiation and hot electrons are the dominant carriers of energy out of the initially photo-excited volume. The mean free paths governing both transport processes exceed the spot size w0, opening the study of ballistic transport of energy into surrounding target material. This femtosecond microscopy experiment, with λ 2 pu pump spot, is well-suited to observe the initial stages, and the radial dimension, of such non-local transport directly on any target material. The physics of this transport is relevant to fast ignition of laser fusion, to generation of ultrashort pulsed x-rays and relativistic proton and ion beams, and to astrophysics. The experimental interaction volume may be small enough that the entire experiment is amenable to large-scale particle-in-cell simulations.electronicengCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.High temperature plasmasLaser pulses, UltrashortEnergy transport in high temperature, high density plasmas on femtosecond timescalesThesis