Sharp, John Malcolm, Jr., 1944-2017-04-042018-01-222017-04-042018-01-222000http://hdl.handle.net/2152/46327Since its introduction, Darcy's law has been implemented as a mathematical tool that allows simple calculation and prediction of low velocity subsurface flows. However, turbulence, non-isothermal conditions, as well as other factors can create conditions where Darcy's law does not accurately describe the head and velocity distributions within a given porous matrix. Darcy's law has been widely applied to analytical and numerical modeling of fluid flow through porous matrix, regardless of the hydrogeologic setting. This study attempts to quantify the error incurred by these models through simultaneous numerical modeling of the mass continuity equation using Darcy's law as well as Forchheimer's relation. To this end, results from steady-state and transient Darcy-based and Forchheimer-based numerical models are presented in this study.electronicengCopyright © is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.Darcy's lawHydrogeological modelingPorous materials--Fluid dynamicsHydrodynamicsNon-Darcy flow through porous mediaThesisOpen