Adding OAI-ORE Support to Repository Platforms

Alexey Maslov, Adam Mikeal, Scott Phillips, John Leggetts, Mark McFarland

Texas Digital Library
TCDL’09
Overview

• Texas Digital Library Use Case for OAI-ORE

• Mapping ORE model to DSpace architecture

• Implementation

• Results and Implications
Texas Digital Library

- State-wide initiative
- Eighteen members
 - Public/Private
 - Small/Medium/Large
Electronic Theses and Dissertations

- Federated Collection
- Built on top of DSpace/Manakin
Current Federation Method

- Performed via scripted ingest process
- New batch every semester
- Manual corrections to existing content
Replacement Requirements

• Perform maintenance automatically

• Detect changes in existing content

• Support interchange of metadata and content
Harvesting Solution

• Use the Open Archives Initiative Protocol for Metadata Harvesting

• Member institutions as data providers

• TDL Federated Repository as a service provider

* Open Archives Initiative Protocol for Metadata Harvesting
 http://www.openarchives.org/pmh/
OAI-PMH, advantages

• Ubiquitous
• Supports selective harvesting
• Tracks changes
• Can be automated
OAI-PMH, obstacles

• No existing harvesting solution for DSpace
• Supports harvesting of metadata specifically
Disseminating content

How do you disseminate content through a metadata harvesting protocol?

- Wrap it in a packaging format
- Include the metadata
- Encode the references to the files
- Harvest the package
METS, advantages

- Metadata Encoding and Transmission Standard
- Maintained by the Library of Congress
- Mature standard
- Widely adopted

http://www.loc.gov/standards/mets/
Packaging, disadvantages

• Complete packaging format
• Open to interpretation
• Ambiguities at the OAI-PMH layer
Open Archives Initiative Object Reuse and Exchange defines standards for the description and exchange of aggregations of Web resources.”

- Specialized
- Simple

* Open Archives Initiative Object Reuse and Exchange
 http://www.openarchives.org/ore/*
Mapping DSpace to OAI-ORE

• ORE Abstract Data Model
• DSpace architecture
• The Mapping
ORE Data Model

- Aggregations
- Aggregated Resources
- Resource Maps
Aggregation (A)

- Describes a set of resources
- Conceptual construct
Aggregated Resource (AR)

- Object of interest
- Part of an aggregation
- Can itself be an aggregation
Aggregated Resource (AR)

- Object of interest
- Part of an aggregation
- Can itself be an aggregation
Resource Map (ReM)

- Describes an aggregation
- Enumerates its aggregated resources
- Can be serialized in RDF or Atom XML
DSpace Model v1.x

- Communities
- Collections
- Items
- Bundles
- Bitstreams
Mapping
Mapping
Bundles?
Bundles, Potential Options

- Bundles as Aggregations of Bitstreams
- Bundles as filters for Aggregated Resources
- Bundles as DSpace-specific metadata
Bundles, Observations

• By default, specialized for internal tasks
• Extendible for any use
• Obscured from the end user
DSpace Bundles
Serialization in Atom
Implementation

- ORE Dissemination
- ORE Harvesting
- Automation
Interfacing with DSpace

- Web UI
- LNI and SWORD
- Ingest and export scripts
- Crosswalks
 - Ingestion
 - Dissemination
ORE Dissemination Crosswalk

• Requires:
 – A DSpace Item

• Produces:
 – Atom-serialized ORE ReM
• Dissemination crosswalk produces ORE ReMs from DSpace Items

• OAI-PMH data provider disseminates them
ORE Harvesting

• Item-level ORE ReM interpreter
• Collection-level OAI-PMH harvester
• Repository level harvest scheduler
ORE Ingestion Crosswalk

• Requires:
 – A DSpace Item
 – Atom-serialized ORE ReM

• Produces:
 – A DSpace Item with Bitstreams created from AR’s
OAI-PMH Harvester

• Queries remote OAI-PMH providers
• Processes responses as individual records
• Implemented at Collection level
Collection Settings

- Source of collection’s content
- OAI-PMH provider information
- Harvesting Level
Collection Source

Notice
Harvesting settings are valid.

Edit Collection: ETD time test 4.15 (UT-TAMU)
- Edit Metadata
- Assign Roles
- Content Source

Content source:
- This is a standard DSpace collection
- This collection harvests its content from an external source

Harvested Collection Location

OAI Provider: http://techreports.library.cornell.edu/oai2

Harvesting Options
Content being harvested:
- Harvest metadata only
- Harvest metadata and references to bitstreams (requires ORE support)
- Harvest metadata and bitstreams (requires ORE support)

Save Return
Harvested Collection Location

OAI Provider:
http://labs.tdl.org/harvest-oai/request
The url of the target repository's OAI provider service

OAI Set id:
hdl_123456789_7685
The persistent identifier used by the OAI provider to designate the target collection

Metadata Format:
Simple Dublin Core

Test Settings
Harvesting a Collection

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Harvest Metadata

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Metadata Replicated

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Case 1: Metadata Only

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Harvest ORE ReMs

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Case 2: Metadata + Content Ref's

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Case 2: Metadata + Content Ref’s

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Case 3: Metadata + Content

Local collection (OAI-PMH harvester)

Remote collection (OAI-PMH provider)
Case 3: Metadata + Content

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Harvest Scheduling System

- Monitors harvested collections
- Starts harvests at regular intervals
- Alerts administrators of errors
Results

- The Primary Use Case
- TDL in General
- The Greater Web Community
Harvesting using PMH+ORE

• Federated ETD collection currently in pre-production at TDL

• Addresses primary requirements
 – Performs maintenance automatically
 – Detects changes in existing content
 – Supports interchange of metadata and content
Other Possibilities

- Specialized DSpace instances
- Flexible repository architecture
- Interoperability with other repository systems

Current Priorities

• Live deployment at TDL
• Release to the open source community
• Integration into DSpace 1.6
INSTITUTE of Museum and Library SERVICES

National Leadership Grant #LG-05-07-0095-07
Questions?