Sliding-mode amplitude control techniques for harmonic oscillators



Journal Title

Journal ISSN

Volume Title


Texas A&M University


This thesis investigates both theoretical and implementation-level aspects of switching- feedback control strategies for the development of voltage-controlled oscillators. We use a modified sliding-mode compensation scheme based on various norms of the system state to achieve amplitude control for wide-tuning range oscillators. The proposed controller provides amplitude control at minimal cost in area and power consumption. Verification of our theory is achieved with the physical realization of an amplitude controlled negative-Gm LC oscillator. A wide-tuning range RF ring oscillator is developed and simulated, showing the effectiveness of our methods for high speed oscillators. The resulting ring oscillator produces an amplitude controlled sinusoidal signal operating at frequencies ranging from 170 MHz to 2.1 GHz. Total harmonic distortion is maintained below 0:8% for an oscillation amplitude of 2 Vpp over the entire tuning range. Phase noise is measured as -105.6 dBc/Hz at 1.135 GHz with a 1 MHz offset.