Design of Zinc Oxide Based Solid-State Excitonic Solar Cell with Improved Efficiency

Date

2012-02-14

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Excitonic photovoltaic devices, including organic, hybrid organic/inorganic, and dye-sensitized solar cells, are attractive alternatives to conventional inorganic solar cells due to their potential for low cost and low temperature solution-based processing on flexible substrates in large scale. Though encouraging, they are currently limited by the efficiency from not yet optimized structural and material parameters and poor overall knowledge regarding the fundamental details. This dissertation aims to achieve improved performance of hybrid solar cells by enhancing material property and designing new device architecture.

The study begins with the addition of XD-grade single-walled carbon nanotube (XDSWNT) into poly(3-hexylthiophene) (P3HT) to improve the current density. By having a weight ratio of XDSWNT and P3HT equaled to 0.1:1, short-circuit current was quadrupled from 0.12 mA cm-2 to 0.48 mA cm-2 and solar cell efficiency was tripled from 0.023% to 0.07%, compared to devices with pure P3HT as a hole transport material. Secondly, a significant improvement in device efficiency with 250 nm long ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increased from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers. Followed by the novel layer-by-layer self-assembly deposition process, the hybrid photoanode study was extended to the longer ZnO nanorod arrays. The best performance, 0.64%, was achieved when the thickness of the photoanodes equaled to 1.2 ?m. Finally, the photovoltaic devices were modified by adding ZnO nanoarpticles into P3HT to increase interfacial area between ZnO and P3HT. The efficiency was enhanced from 0.18% to 0.45% when the ZnO nanorod arrays were 625 nm in length. Our successful design of the device morphology significantly contributes to the performance of solid-state hybrid solar cells.

Description

Citation