Geometric properties of outer automorphism groups of free groups

dc.contributor.advisorReid, Alan W.
dc.creatorTaylor, Samuel Josephen
dc.date.accessioned2014-07-01T20:50:21Zen
dc.date.accessioned2018-01-22T22:26:10Z
dc.date.available2018-01-22T22:26:10Z
dc.date.issued2014-05en
dc.date.submittedMay 2014en
dc.date.updated2014-07-01T20:50:21Zen
dc.descriptiontexten
dc.description.abstractThis thesis examines geometric aspects of the outer automorphism group of a finitely generate free group. Using recent advances made in understanding mapping class groups as our primary motivation, we refine methods to understand the structure of Out(F_n) via its action on free factors of F_n. Our investigation has a number of applications: First, we give a natural notion of projection between free factors, extending a construction of Bestvina-Feighn. Second, we provide a new method to produce fully irreducible automorphisms of F_n using combinations of automorphism supported on free factors. Finally, we use these results to give a general construction of quasi-isometric embeddings from right-angled Artin groups into Out(F_n).en
dc.description.departmentMathematicsen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/2152/24948en
dc.language.isoenen
dc.subjectF_nen
dc.subjectOut(F_n)en
dc.subjectSubfactor projectionen
dc.titleGeometric properties of outer automorphism groups of free groupsen
dc.typeThesisen

Files