# Test versus predictions for rotordynamic and leakage characteristics of a convergent-tapered, honeycomb-stator/smooth-rotor annular gas seal

## Date

## Journal Title

## Journal ISSN

## Volume Title

## Publisher

## Abstract

This thesis presents the results for measured and predicted rotordynamic coefficients and leakage for a convergent-tapered honeycomb seal (CTHC). The test seals had a diameter of 114.968 mm (4.5263 in) at the entrance, and a diameter of 114.709 mm (4.5161 in) at the exit. The honeycomb cell depth was 3.175 mm (0.125 in), and the cell width was 0.79 mm (0.0311 in). Measurements are reported with air as the test fluid at three different speeds: 10,200, 15,200, and 20,200 rpm; with a supply pressure of 69 bar (1,000 psi), with exit-to-inlet pressure ratios from 20% to 50%, and using two rotors that are 114.3 mm (4.500 in) and 114.5 mm (4.508 in) respectively; this enables the same seals to be tested under two different conditions. The q factor, which is just a simple way to quantify taper is defined as the taperangle seal parameter and is calculated using the inlet and exit radial clearance. Two taper-angles parameters were calculated; q = 0.24 for the 114.3 mm (4.500 in) rotor, and q = 0.386 for the 114.5 mm (4.508 in) rotor. The q = 0.24 condition was compared to a constant clearance honeycomb seal (CCHC q = 0) because both sets of data were taken with the same rotor diameter. The direct stiffness, effective stiffness, and direct damping coefficients were larger for q = 0.24. The CTHC q = 0.24 eliminates the direct negative static stiffness obtained with CCHC ( q = 0). The cross-coupled stiffness and damping also were larger for q = 0.24, especially at low frequencies. Effective damping is one of the best indicators in determining the stability of a roughened stator annular gas seal. The frequency at which it changes sign is called the cross-over frequency. In applications, this frequency needs to be lower than the rotorsystem?s first natural frequency. Otherwise, the seal will be highly destabilizing instead of highly stabilizing. The magnitude of effective damping and the cross-over frequency also increases with q for all frequencies. Constant clearance honeycomb seals have less leakage than convergenttapered honeycomb seals. CTHC ( q = 0.24), has approximately 20 percent more leakage than CCHC ( q = 0). The experimental results for rotordynamic characteristics and leakage were compared to theoretical predictions by the two-control-volume developed by Kleynhans and Childs. All rotordynamic coefficients were reasonably predicted for all cases. The model does a better job predicting the cross-coupled stiffness and damping coefficients rather than the direct stiffness and damping coefficients. Also, the two-control-volume model predicts the dynamic characteristics of CCHC ( q = 0) better, and does not predict well the effective stiffness and damping for CTHC q = 0.386.