Conductive nickel nanostrand-reinforced polymer nanocomposites
Abstract
Conductive and flexible nanocomposites can have wide applications in textiles, including wearable sensors, antenna, electrodes, etc. The objective of this research is to develop electrically conductive fibers and films that are flexible and deformable for use in textile structures able to accommodate the drape and movement of the human body. To achieve this objective, we evaluate the electrical properties of PEDOT:PSS/nickel nanostrand as well as nylon 6/nickel nanostrand nanocomposites. Nickel nanostrands (NiNS) were first used to reinforce an intrinsically conductive polymer, Poly(3,4-ethylenedioxythiophene) (PEDOT:PSS), in order to fabricate nanocomposite films with high electrical conductivity. The electrical properties of the films were evaluated by the Van der Pauw method. The addition of 10 wt% nanostrands in PDOT:PSS provided a two order of magnitude improvement in electrical conductivity. In addition to PDOT:PSS, nylon 6/NiNS nanocomposite fibers were produced using electrospinning and exhibited diameters in the sub-micron range. The NiNS-reinforced fibers had electrical conductivity that exceeded the ESD range, which offers the potential for use in protective textile applications.