An Analysis of the Development of Shoot Apices in Excised Immature Zygotic Cotton Embryos (Gossypium hirsutum cv Texas Marker-1)



Journal Title

Journal ISSN

Volume Title



Although cottonseed is an important source of oil and fiber, the development of cotton embryos has not been investigated as well as development of cotton fiber. The development of cotton embryos in late heart-stage and early cotyledonary stage is less well investigated than the first 10-14 days after anthesis, or the late stages of embryo development during seed-fill and desiccation. This analysis focused on cotton embryos in the late heart-stage and early cotyledonary stage of development (1.5-4.0 mm or about 13-18 DPA).
In vitro analyses are important tools for studying embryos in isolation from the endosperm and fiber and when it is necessary to monitor the developing embryo continuously. The original goal of this work was to develop an in vitro culture method that would support continued development of excised zygotic embryos from the early cotyledonary stage into complete plants with true shoots, i.e. true leaves or visible buds and then to use this method to study aspects of developmental regulation during cotyledonary stage and the transition to later stages. Not all embryos were competent to develop true shoots (an apical bud or a leaf plus a bud) in culture. A number of cultural variables were tested and eliminated. Embryo maturity at the time embryos were excised and the presence or absence of light during the first 14 days of culture affected the competence of immature embryos to developed true shoots. The effect of light was verified in several large replicated experiments. Morphological changes occurring during in vivo development were examined microscopically. The transition from heart-stage to early cotyledonary stage and the development of the first leaf from initials to a large structure were identified. Embryonic shoot apices continued to grow in cultured 1-3 mm embryos. The size and shape of light-treated and dark-treated embryonic apices was compared. A germination test of mature seeds identified seedlings with a similar phenotype occurring at similar rates in seedlings and light-cultured embryos and possible causes were discussed.