Action selection in modular reinforcement learning

dc.contributor.advisorBallard, Dana H. (Dana Harry), 1946-
dc.creatorZhang, Ruohanen
dc.date.accessioned2014-09-16T20:04:19Zen
dc.date.accessioned2018-01-22T22:26:28Z
dc.date.available2018-01-22T22:26:28Z
dc.date.issued2014-08en
dc.date.submittedAugust 2014en
dc.date.updated2014-09-16T20:04:19Zen
dc.descriptiontexten
dc.description.abstractModular reinforcement learning is an approach to resolve the curse of dimensionality problem in traditional reinforcement learning. We design and implement a modular reinforcement learning algorithm, which is based on three major components: Markov decision process decomposition, module training, and global action selection. We define and formalize module class and module instance concepts in decomposition step. Under our framework of decomposition, we train each modules efficiently using SARSA($\lambda$) algorithm. Then we design, implement, test, and compare three action selection algorithms based on different heuristics: Module Combination, Module Selection, and Module Voting. For last two algorithms, we propose a method to calculate module weights efficiently, by using standard deviation of Q-values of each module. We show that Module Combination and Module Voting algorithms produce satisfactory performance in our test domain.en
dc.description.departmentComputer Sciencesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/2152/25916en
dc.language.isoenen
dc.subjectModular reinforcement learningen
dc.subjectAction selectionen
dc.subjectModule weighten
dc.titleAction selection in modular reinforcement learningen
dc.typeThesisen

Files