A Search for Dark Matter with the ZEPLIN II Detector



Journal Title

Journal ISSN

Volume Title



Galaxies and clusters of galaxies are believed to be dominated by non-luminous non-baryonic dark matter. A favored candidate is a new type of Weakly Interacting Massive Particle (WIMP) with a mass of order 100 GeV/c^2. The ZEPLIN II experiment is a WIMP search experiment that attempts to directly detect WIMP interactions using the two-phase xenon approach. The detector measures both scintillation and ionization generated by interactions in a 31 kg liquid xenon target. This approach provides a powerful discrimination between nuclear recoils, as expected from WIMPs, and background electron recoils. In this work, we develop a new X^2 approach to determine the three dimensional event positions in an attempt to improve the background rejection. The optical properties of the PTFE reflectors and the grids of the detector were determined using the Geant4 simulation, and event positions were obtained by finding the best match to the amount of light in each photomultiplier. This was found to greatly improve the position resolution. The approach was then applied to the WIMP search data. It was found that one of the dominating background sources was events from the gas above the anode grid and not from the PTFE walls caused by the small signals as previously thought. WIMP search results were then obtained from the first 31 days of stable ZEPLIN II data using two methods. Although the X^2 method greatly improved position resolution, the number of background events was not significantly altered and the new limit agreed well with the limit published by the collaboration.