Phosphine-mediated furan formations and hydrogen-mediated reductive aldol reactions



Journal Title

Journal ISSN

Volume Title



Aldol reactions are widely used in forming new carbon-carbon bonds. Since the discovery of the aldol condensation, controlling the relative and absolute stereochemistry in aldol chemistry has been a major interest in organic chemistry. Efforts in achieving diastereoselectivity in aldol reactions via chelation of Lewis acids to chiral aldehydes are reviewed. The following chapters discuss the diastereoselectivities of hydrogen-mediated reductive aldol reactions. Herein, a highly diastereoselective reductive aldol coupling reactions with broad substrate scope using rhodium catalysts ligated to (2-furyl)₃P were studied. It was demonstrated that the coupling of enones with alpha-amino aldehydes proceeds with high diastereoselectivity via chelation control. The second topic deals with phosphine-mediated furan ring formation. Derivatives of furan are often found in natural products and therapeutic agents. To provide a more facile route to substituted furans, we have developed a phosphine mediated reductive cyclization of gamma-acyloxy butynoates. In this reaction, phosphine is involved in both the reductive formation of allenyl ketones from acyloxy butynoates and the subsequent catalytic cyclization.