Extreme energy absorption : the design, modeling, and testing of negative stiffness metamaterial inclusions



Journal Title

Journal ISSN

Volume Title



A persistent challenge in the design of composite materials is the ability to fabricate materials that simultaneously display high stiffness and high loss factors for the creation of structural elements capable of passively suppressing vibro-acoustic energy. Relevant recent research has shown that it is possible to produce composite materials whose macroscopic mechanical stiffness and loss properties surpass those of conventional composites through the addition of trace amounts of materials displaying negative stiffness (NS) induced by phase transformation [R. S. Lakes, et al., Nature, 410, pp. 565-567, (2001)]. The present work investigates the ability to elicit NS behavior without employing physical phenomena such as inherent nonlinear material behavior (e.g., phase change or plastic deformation) or dynamic effects, but rather the controlled buckling of small-scale structural elements, metamaterials, embedded in a continuous viscoelastic matrix. To illustrate the effect of these buckled elements, a nonlinear hierarchical multiscale material model is derived which estimates the macroscopic stiffness and loss of a composite material containing pre-strained microscale structured inclusions. The nonlinear multiscale model is then utilized in a set-based hierarchical design approach to explore the design space over a wide range of inclusion geometries. Finally, prototype NS inclusions are fabricated using an additive manufacturing technique and tested to determine quasi-static inclusion stiffness which is compared with analytical predictions.