The feeding biomechanics of juvenile red snapper (Lutjanus campechanus) from the northwestern Gulf of Mexico



Journal Title

Journal ISSN

Volume Title



Juvenile red snapper are attracted to structure and settle onto low profile reefs, which serve as nursery grounds. Little is known about their life history during this time. However, recent studies from a shell bank in the NW Gulf of Mexico have shown higher growth rates for juveniles located on mud habitats adjacent to low profile reefs, perhaps due to varied prey availability and abundance. To further investigate the habitat needs of juvenile red snapper, individuals were collected from a low profile shell ridge (on-ridge) and adjacent mud areas (off-ridge) on Freeport Rocks, TX, and divided into three size classes (?3.9 cm SL, 4.0-5.9 cm SL, ?6 cm SL). Feeding morphology and kinematics were characterized and compared among size classes and between the two habitats. A dynamic jaw lever model was used to make predictions about feeding mechanics, and kinematic profiles obtained from high-speed videos of prey capture events validated the model?s predictive ability. Model output suggested an ontogenetic shift in feeding morphology from a juvenile feeding mode (more suction) to an adult feeding mode (more biting). Stomach contents revealed a concomitant shift in prey composition that coincided with the ontogenetic shift in feeding mode. The model also predicted that on-ridge juveniles would have faster jaw closing velocities compared to off-ridge juveniles, which had slower, stronger jaws. Analysis of prey capture events indicated that on-ridge juveniles demonstrated greater velocities and larger displacements of the jaws than off-ridge juveniles. Shape analysis was used to further investigate habitat effects on morphology. Off-ridge juveniles differed from on-ridge in possessing a deeper head and body. Results from model simulations, kinematic profiles, personal observations, and shape analysis all complement the conclusion that on-ridge juveniles exhibited more suction feeding behavior, whereas off-ridge juveniles used more biting behavior. Stomach contents demonstrated an early switch to piscivory in off-ridge juveniles compared to on-ridge juveniles, which may account for higher off-ridge growth rates. Habitat disparity, perhaps available prey composition, generated variations in juvenile feeding mechanics and consequently feeding behavior. This disparity may ultimately affect the growth rates and recruitment success of juvenile red snapper from different habitats.