The use of a rainfall simulator for brush control research on the Edwards Plateau region of Texas

dc.contributorMunster, Clyde L.
dc.contributorWilcox, Bradford P.
dc.creatorPorter, Shane Courtney
dc.description.abstractThe thicketization of the semi-arid region of the United States has resulted in a dramatic change allowing invasive woody species to dominate the landscape with an unknown impact to the water budget. This landscape transformation has created a need to study the hydrology of the region and in particular the effects of increased brush on the water cycle. To study the effects of invasive brush on the water budget, a portable abovecanopy rainfall simulator was developed for plot scale hydrologic research. The rainfall simulator was tested at various field locations, including within the Edwards Plateau, to replicate natural rainfall events on typical hillslope-scale plots. The rainfall simulator was used to quantify aspects of the water budget for a 7 m by 14 m research plot on the Edwards Plateau in Texas. Three rainfall simulation dates were selected for detailed hydrologic analysis. Overall, throughfall accounted for 74% of the water applied to the plot, while 26% of applied water was in the form of stemflow. Lateral subsurface flow represented 33% of the water measured leaving the research plot. A notable result of rainfall simulations was extensive lateral subsurface flow and no surface runoff. The rainfall simulator has proven to be a cost-effective and efficient research tool for replicating natural rainfall in arid and semi-arid environments.
dc.publisherTexas A&M University
dc.subjectrainfall simulator
dc.subjectbrush control
dc.titleThe use of a rainfall simulator for brush control research on the Edwards Plateau region of Texas