Controlling Performance of Laminated Composites Using Piezoelectric Materials



Journal Title

Journal ISSN

Volume Title



Composite materials are increasingly used in aerospace, underwater, and automotive structures. Their use in structural applications is dictated by the outstanding strength and stiffness while being lightweight in addition to their flexibility in tailoring the desired performance in the design of structures. The present study focuses on the failure analysis and shape control of smart composite laminates under coupled hygrothermal, electric and mechanical stimuli. A linear thermo-electro-elastic constitutive model for transversely isotropic materials is used for each ply in the composite laminates. The first-ply failure and ultimate laminate failure criteria of composite laminates are used to predict the failure stress and mode of the composite laminate where we incorporate various commonly known macroscopic failure criteria including Tsai-Hill, Tsai Wu, maximum stress and maximum strain for each lamina. We study the use of piezoelectric materials such as lead zirconate titanate (PZT) and piezoelectric fiber composites as actuators for controlling deformation in composite laminates; this study focuses on bending deformation. The purpose is to minimize unwanted deformation, such as the one due to hygrothermal effect, by applying counter deformation to avoid failure in such composite laminates. In addition, analysis based on the Classical Laminate Theory (CLT) is performed for Carbon/Epoxy (AS4/3501-6) thin laminate with stacking sequence [90/45/-45/0]s under uniaxial and biaxial in-plane loading. One of the major types of failure in smart structures is caused by debonding of the actuator from the host structure which is caused by the high stress discontinuity between the interface of the host structure and the active part. By using embedded actuators, such that the active part is incorporated into one of the layers of the composite beam during the manufacturing process, the stress concentration effect can be reduced while obtaining similar actuation values. Moreover, a control algorithm is proposed that enables the composite laminate to overcome the failure load by using piezoelectric materials where a counter electric voltage could be applied which prevents failure from occurring. Furthermore, computer software called ?Hyper Composite? was developed using Action Script? and Adobe Flash? in order to perform stress and failure analysis for general composite laminates. Several carpet plots were also generated to show the interacting behavior of two independent variables such as Young?s modulus, Poisson?s ratio, shear modulus and the coefficient of thermal and moisture expansion at different percentile constitutions for the laminate different plies. This computer software is useful for estimating overall properties of smart composite laminates in designing smart composite structures.