Analysis of side end pressurized bump type gas foil bearings: a model anchored to test data



Journal Title

Journal ISSN

Volume Title



Comprehensive modeling of gas foil bearings (GFBs) anchored to reliable test data will enable the widespread usage of GFBs into novel turbomachinery applications, such as light weight business aircraft engines, hybrid fuel cell-turbine power systems, and micro-engines recharging battery packs for clean hybrid electric vehicles. Pressurized air is often needed to cool GFBs and to carry away heat conducted from a hot turbine in oil-free micro turbomachinery. Side end pressurization, however, demonstrates a profound effect on the rotordynamic performance of GFBs. This dissertation presents the first study that devotes considerable attention to the effect of side end pressurization on delaying the onset rotor speed of subsynchronous motions. GFB performance depends largely on the support elastic structure, i.e. a smooth foil on top of bump strips. The top foil on bump strips layers is modeled as a two dimensional (2D), finite element (FE) shell supported on axially distributed linear springs. The structural model is coupled to a unique model of the gas film governed by modified Reynolds equation with the evolution of gas flow circumferential velocity, a function of the side end pressure. Predicted direct stiffness and damping increase as the pressure raises, while the difference in cross-coupled stiffnesses, directly related to rotor-bearing system stability, decreases. Prediction also shows that side end pressurization delays the threshold speed of instability. Dynamic response measurements are conducted on a rigid rotor supported on GFBs. Rotor speed-up tests first demonstrate the beneficial effect of side end pressurization on delaying the onset speed of rotor subsynchronous motions. The test data are in agreement with predictions of threshold speed of instability and whirl frequency ratio, thus validating the model of GFBs with side end pressurization. Rotor speed coastdown tests at a low pressure of 0.35 bar evidence nearly uniform normalized rotor motion amplitudes and phase angles with small and moderately large imbalance masses, thus implying a linear rotor response behavior. A finite element rotordynamic model integrates the linearized GFB force coefficients to predict the synchronous responses of the test rotor. A comparison of predictions to test data demonstrates an excellent agreement and successfully validates the rotordynamic model.