Static Load Balancing using Non-Uniform Mesh Partitioning based on Ray Density Prediction for the Parallel Wavefront Construction Method
Abstract
The Wavefront Construction (WFC )method, which was developed based on ray theory, is one of the most efficient tools in seismic modeling. The main idea of this method is to propagate a wavefront represented by rays in a computational mesh that is interpolated whenever an accuracy criterion is violated. Recently, a parallel WFC was developed using the Standard Template Adaptive Parallel Library. However, due to wavefront density adaptivity, the parallel implementation exhibits inefficient performance owing to load imbalances between multiple processors.This paper applies a static load balancing approach based on a method for predicting future loads for a synthetic salt dome model, in order to improve the performance.The approach utilizes a preliminary conventional ray simulation to estimate the cost (future load) of each cell in the WFC's initial wavefront mesh.Then it applies a non-uniform mesh decomposition that results in a more efficient parallel WFC. Our implementation shows better and stable scalability in most WFC simulations. Overall, this paper contributes to understanding the behavior of wavefront mesh adaptability and predicting earth model complexities, and it serves as a guide for achieving the ultimate goal, a fully load-balanced parallel WFC.