Design and analysis of a volume adjustable transtibial prosthetic socket for pediatric amputees in developing countries



Journal Title

Journal ISSN

Volume Title



For pediatric amputees in developing countries, where characteristically rapid growth of children is compounded by a lack of medical services, maintaining proper socket fit is a challenging but necessary endeavor. A socket design that adjusts for radial and longitudinal growth will allow patients to wear the same socket for a longer period of time saving them the expense of subsequent fittings and hardware. Manufacture of such a socket poses a challenge for contemporary manufacturing processes. Due to its ability to rapidly manufacture complex part geometries, Selective Laser Sintering (SLS) is particularly suited to this application. Several preliminary design concepts for a volume adjustable transtibial SLS prosthetic socket for pediatric amputees in developing countries have been generated. These current design concepts utilize fasteners such as ratchet hooks and threads. Results from design and validation of theoretical models of these fastener concepts are the focus of this thesis.