Properties of commensurability classes of hyperbolic knot complements

dc.contributor.advisorReid, Alan W.en
dc.contributor.committeeMemberAdams, Colin C.en
dc.contributor.committeeMemberGordon, Cameron M.en
dc.contributor.committeeMemberKnopf, Danielen
dc.contributor.committeeMemberLuecke, John E.en
dc.creatorHoffman, Neil Reardonen
dc.date.accessioned2011-06-16T20:06:40Zen
dc.date.accessioned2011-06-16T20:06:48Zen
dc.date.accessioned2017-05-11T22:22:19Z
dc.date.available2011-06-16T20:06:40Zen
dc.date.available2011-06-16T20:06:48Zen
dc.date.available2017-05-11T22:22:19Z
dc.date.issued2011-05en
dc.date.submittedMay 2011en
dc.date.updated2011-06-16T20:06:49Zen
dc.descriptiontexten
dc.description.abstractThis thesis investigates the topology and geometry of hyperbolic knot complements that are commensurable with other knot complements. In chapter 3, we provide an infinite family examples of hyperbolic knot complements commensurable with exactly two other knot complements. In chapter 4, we exhibit an obstruction to knot complements admitting exceptional surgeries in conjunction with hidden symmetries. Finally, in chapter 5, we discuss the role of surfaces embedded in 3-orbifolds as it relates to hidden symmetries.en
dc.description.departmentMathematicsen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/2152/ETD-UT-2011-05-3063en
dc.language.isoengen
dc.subjectKnot theoryen
dc.subjectHidden symmetriesen
dc.subjectKnotsen
dc.subjectLow-dimensional topologyen
dc.titleProperties of commensurability classes of hyperbolic knot complementsen
dc.type.genrethesisen

Files