Buffer insertion in large circuits using look-ahead and back-off techniques
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Buffer insertion is an essential technique for reducing interconnect delay in submicron circuits. Though it is a well researched area, there is a need for robust and effective algorithms to perform buffer insertion at the circuit level. This thesis proposes a new buffer insertion algorithm for large circuits. The algorithm finds a buffering solution for the entire circuit such that buffer cost is minimized and the timing requirements of the circuit are satisfied. The algorithm iteratively inserts buffers in the circuit improving the circuit delay step by step. At the core of this algorithm are very simple but extremely effective techniques that constructively guide the search for a good buffering solution. A flexibility to adapt to the user's requirements and the ability to reduce the number of buffers are the strengths of this algorithm. Experimental results on ISCAS85 benchmark circuits show that the proposed algorithm, on average, yields 36% reduction in the number of buffers, and runs three times faster than one of the best known previously researched algorithms.