Novel composite materials synthesized by the high-temperature interaction of pyrrole with layered oxide matrices

dc.contributor.advisorMcDevitt, John T.en
dc.creatorPavel, Alexandru Cezaren
dc.date.accessioned2008-08-28T22:44:34Zen
dc.date.accessioned2017-05-11T22:17:09Z
dc.date.available2008-08-28T22:44:34Zen
dc.date.available2017-05-11T22:17:09Z
dc.date.issued2005en
dc.descriptiontexten
dc.description.abstractThe initial goal of the research presented herein was to develop the very first synthetic metal – high-temperature superconductor ceramic composite material, in the specific form of a polypyrrole - Bi2Sr2CaCu2O8+δ nanocomposite. In the course of scientific investigation, this scope was broadened to encompass structurally and compositionally similar layered bismuthates and simpler layered oxides. The latter substrates were prepared through novel experimental procedures that enhanced the chance of yielding nanostructured morphologies. The designed novel synthesis approaches yielded a harvest of interesting results that may be further developed upon their dissemination in the scientific community. High-temperature interaction of pyrrole with molybdenum trioxide substrates with different crystalline phases and morphologies led to the formation of the first members of a new class of heterogeneous microcomposites characterized by incomplete occupancy by the metal oxide core of the volume encapsulated by the rigid, amorphous permeable polymeric membrane that reproduces the volume of the initial grain of precursor substrate. The method may be applied for various heterogeneous catalyst substrates for the precise determination of the catalytically active crystallographic planes. In a different project, room-temperature, templateless impregnation of molybdenum trioxide substrates with different crystalline phases and morphologies by a large excess of silver (I) cations led to the formation of 1-D nanostructured novel Ag-MoO ternary phase in what may be the simplest experimental procedure available to date that has yielded a 1-D nanostructure, regardless the nature of the constituent material. Interaction of this novel ternary phase with pyrrole vapors at high reaction temperatures led to heterogeneous nanostructured composites that exhibited a silver nanorod core. Nanoscrolls of vanadium pentoxide xerogel were synthesized through a novel, facile reflux-based method that employed very acidic pH levels and long reaction times. The nanoscrolls proved to be an excellent precursor for the synthesis of reduced vanadium oxide nanosheets by the redox intercalation of long chain monoamine molecules. In a related development, the very first synthetic metal – mixed-valence polyoxovanadate salt hybrid material was synthesized in the form of a polypyrrole – tetrammonium hexavanadate microcomposite by a redox simultaneous co-precipitation in an aqueous solution. The novel material displayed good mechanical properties towards solid lubricant applications and tunable electronic conductivity. Nanocomposites of polypyrrole – layered bismuthates were produced by the topotactic intercalation of pyrrole and its subsequent in situ polymerization. Insulating and superconducting layered bismuthates were used in a similar experimental procedure that used pre-intercalated iodine species as sacrificial topotactic oxidizing agents. A novel method of iodine intercalation by a solution-based transport procedure was used in the process. Interaction of pyrrole with layered bismuthates at high reaction temperatures led to the formation of polymer-covered metal nanorods as a result of intrinsic lattice templating effect. The successful synthesis of the 1-D heterogeneous nanostructures represents the first example in which nanocomposites were used as precursors. Appropriate doping of the initial layered ceramic substrates led to polymer-covered metal alloy nanorods.
dc.description.departmentChemistry and Biochemistryen
dc.description.departmentChemistryen
dc.format.mediumelectronicen
dc.identifierb61147254en
dc.identifier.oclc71126288en
dc.identifier.urihttp://hdl.handle.net/2152/2350en
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subject.lcshPyrrolesen
dc.subject.lcshComposite materialsen
dc.titleNovel composite materials synthesized by the high-temperature interaction of pyrrole with layered oxide matricesen
dc.type.genreThesisen

Files