A NUMERICAL AND EXPERIMENTAL STUDY OF WINDBACK SEALS

Date

2010-01-16

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Windback seals work similarly to labyrinth seals except for the effect of helical groove. These seals are essentially a tooth on stator or tooth on rotor labyrinth seal where the grooves are a continuous helical cut like a thread. Windback seals are used in centrifugal gas compressor to keep oil out of the gas face seal area. These face seals cannot be contaminated by oil. A purge gas is applied to the seal to help force the oil back into the bearing area. The windback seal should be designed to prevent any oil contamination into the supply plenum and to reduce purge gas leakage. The CFD simulations have been performed with the effect of clearance, tooth width, cavity shape, shaft rotation, eccentricity, and tooth location on the seal leakage performance and the flow field inside the seal. The leakage flow rate increases with increasing the pressure differential, rotor speed, radial clearance, cavity size, and shaft diameter and with decreasing the tooth width. The eccentricity has a minimal effect for the windback seal. From oil simulations, the windback seal with 25% rotor eccentricity has some of the journal bearing action and drives back flow into the gas plenum. However the windback seal can be used to force the oil back into the bearing side before starting the compressor by applying a purge gas flow since the positive axial velocity inside the cavity is larger than the negative axial velocity. m A Rw cav & / ? is constant for varying shaft rotation since the leakage flow rate for the windback seal increases linearly as the the rotor speed increases. The leakage flow rate for the windback seal increases as the groove size increases due to the pumping action of the windback seal. A windback seal design based upon the numerical simulations that minimize gas leakage and help prevent gas face seal oil contamination was optimized. The windback seal has two leakage flow paths. Since the leakage flow rate under teeth of windback seals is the same as for a similar geometry labyrinth seal, the flow under the teeth can be predicted by two-dimensional labyrinth seal analysis. An empirical model for the leakage rate through the cavity has been developed which fits the data with a standard deviation of 0.12.

Description

Citation