The origin and properties of mass transport deposits, Ursa Basin, Gulf of Mexico



Journal Title

Journal ISSN

Volume Title



Uniaxial consolidation experiments on Mass Transport Deposit (MTD) and non-MTD core samples from Ursa Basin, Gulf of Mexico, show MTDs have a lower porosity at a given effective stress compared to adjacent non-MTD sediments; a behavior observed in additional experiments on lab remolded Ursa core and resedimented Boston Blue Clay (BBC). I hypothesize debris flow action remolded the sediment: removing its stress history through shearing action, resulting in dense sediments at shallow depth. I supplement testing this hypothesis through lab remolding of BBC (in addition to Ursa clay) due to the greater availability and knowledge of this material. Ursa MTDs record multiple submarine slope failure events within the upper 200 meters below sea floor (mbsf); the most prominent is labeled MTD-2. MTDs have lower porosity and higher bulk density than surrounding, non-MTD, sediment. Porosity ([phi]) is 52% at 125mbsf – immediately below MTD-2; whereas [phi] is 46% at 115mbsf – within MTD-2. Comparison of non-MTD samples to MTD-2 samples, and intact to remolded samples, shows a decrease in sediment compressibility (Cc) within the MTD-2 and remolded sediments. Permeability within Ursa mudstones also declines with porosity according to: log (k) = A[phi] - B. Permeability is slightly higher within MTD-2; however grain size analysis indicates lower clay content in MTD-2 versus the non-MTDs. Pre-consolidation stress interpretations from the experiments show a linear trend in both MTD and non-MTD sediments, indicating both geologic units depict the same pore pressure profile. Remolding via debris flow explains the origin of MTDs at Ursa and governs the evolution of this geologic unit to its dense, highly consolidated, state today. At some point, slope failure triggered movement of the sediment down slope in form of a debris flow. The shearing action of the debris flow weakened the sediment, reducing its ability to support the overburden. As consolidation resumed, the remolded sediment followed a new, less steep, Cc curve. Within the geologic record, a distinctive dense, shallow unit is preserved; evidence for historical slope failure.