The role of docosahexaenoic acid in mediating mitochondrial membrane lipid peroxidation and apoptosis in colonocytes.



Journal Title

Journal ISSN

Volume Title


Texas A&M University


Colon cancer is the second leading cause of cancer death in the United States. Epidemiological data indicate that the consumption of dietary fiber and fish/marine products favorably modulate colon tumorigenesis. Docosahexaenoic acid (DHA, 22:6n-3) from fish oil, and butyrate, a fiber fermentation product generated in colon, protect against colon tumorigenesis in part by inducing apoptosis. We have shown that DHA is incorporated into mitochondrial membrane phospholipids, which enhances oxidative stress and mitochondrial membrane potential (MP) dissipation. To elucidate the subcellular origin of oxidation induced by DHA and butyrate exposure, young adult mouse colonocytes (YAMC) were treated with 0200 ??M DHA, linoleic acid (LA, 18:2n-6) or no fatty acid (control) for 72 h with or without 5 mM butyrate for the final 6-24 h. Real time analysis of cellular membrane lipid oxidation, as indicated by oxidation of a lipophilic vital dye, mitochondrial permeability transition (MPT), as characterized by MP dissipation, and cytosolic ROS production, as depicted by hydrophilic ROS reactive fluorophore accumulation, were measured by living cell fluorescence microscopy. After 24 h of butyrate treatment, DHA primed cells showed a 29% increase in lipid oxidation (p<0.01), compared to no butyrate treatment, which could be blocked by a mitochondria targeted antioxidant, MitoQ (p <0.05), whereas LA treatment did not show an effect. In the absence of butyrate, DHA treatment, compared to LA, increased resting MP by 14% (p <0.01). In addition, butyrate-induced MP dissipation was greater (20%) in DHA primed cells as compared to LA (10%). This effect was blocked by pre-incubation with MPT inhibitors, cyclosporin A or bongkrekic acid at 1 ??M. These data suggest an increase in mitochondrial lipid oxidation and the resultant change in MP may contribute to the induction of apoptosis by DHA with butyrate as shown previously.