Spatial interpolation with Gaussian processes and spatially varying regression coefficients

dc.contributor.advisorKeitt, Timothy H.en
dc.contributor.committeeMemberScott, James Gen
dc.creatorMitchell, Daniel Lewisen
dc.creator.orcid0000-0001-8326-9643en
dc.date.accessioned2015-11-16T20:10:03Zen
dc.date.accessioned2018-01-22T22:29:10Z
dc.date.available2015-11-16T20:10:03Zen
dc.date.available2018-01-22T22:29:10Z
dc.date.issued2015-08en
dc.date.submittedAugust 2015en
dc.date.updated2015-11-16T20:10:03Zen
dc.descriptiontexten
dc.description.abstractLinear regression is undoubtedly one of the most widely used statistical techniques, however because it assumes independent observations it can miss important features of a dataset when observations are spatially dependent. This report presents the spatially varying coefficients model, which augments a linear regression with a multivariate Gaussian spatial process to allow regression coefficients to vary over the spatial domain of interest. We develop the mathematics of Gaussian processes and illustrate their use, and demonstrate the spatially varying coefficients model on simulated data. We show that it achieves lower prediction error and a better fit to data than a standard linear regression.en
dc.description.departmentStatisticsen
dc.format.mimetypeapplication/pdfen
dc.identifierdoi:10.15781/T2BK82en
dc.identifier.urihttp://hdl.handle.net/2152/32508en
dc.subjectSpatial statisticsen
dc.subjectGaussian processen
dc.subjectSpatial interpolationen
dc.subjectSpatially varying coefficientsen
dc.titleSpatial interpolation with Gaussian processes and spatially varying regression coefficientsen
dc.typeThesisen

Files