Integrated system for ultrasonic, elasticity and photoacoustic imaging



Journal Title

Journal ISSN

Volume Title



By integrating three complementary imaging techniques - ultrasound, elasticity and photoacoustic imaging, a hybrid imaging system utilizing an array transducer is proposed for various biomedical imaging applications including cancer detection, diagnosis and therapy monitoring. Simultaneous imaging of the anatomy (ultrasound imaging), changes in biomechanical properties (elasticity imaging) and cancer-induced angiogenesis (photoacoustic imaging) of tissue is based on many synergistic features of these modalities and may result in a unique and important imaging tool. In this study, numerical analysis and experimental studies are presented to demonstrate the feasibility, to evaluate the performance, and also to improve the quality of the combined array-based ultrasound, elasticity and photoacoustic imaging system. To estimate spatial resolution, a point source was imaged using ultrasound and photoacoustic imaging modes. Then, several tissue mimicking phantoms were examined using ultrasound, photoacoustic and elasticity imaging. In elasticity imaging, ultrasound frames were acquired during deformation of the tissue. To reduce the data acquisition time of the system, high frame rate imaging was used. High frame rate imaging is possible by transmitting a broader and less focused ultrasound beam but the image quality is sacrificed. Thus, we compared the quality of the high frame rate and conventional ultrasound images. In photoacoustic imaging, acoustic transients are generated simultaneously in the entire volume of the laser irradiated tissue. Hence, image formation (beamforming) algorithms were developed based on the characteristics of the photoacoustic signals. Then, adaptive beamforming method is suggested to improve the image quality of the photoacoustic imaging. The results of the numerical analyses and experimental studies clearly indicate that ultrasound, elasticity and photoacoustic imaging techniques complement each other and together provide critical information needed for the reliable detection and diagnosis of diseases.