Engineering and characterization of disulfide bond isomerases in Escherichia coli



Journal Title

Journal ISSN

Volume Title



Disulfide bond formation is an essential process for the folding and biological activity of most extracellular proteins; however, it may become the limiting step when the production of these proteins is attempted in heterologous hosts such as Escherichia coli. The rearrangement of incorrect disulfide bonds between cysteines that do not normally interact in the native structure of a protein is carried out by disulfide isomerase enzymes. The disulfide isomerase present in the bacterial secretory compartment (the periplasmic space) is the homodimeric enzyme DsbC. The objective of this dissertation was to understand the key features of how DsbC catalyzes disulfide bond isomerization. Chimeric disulfide isomerases comprising of protein domains that share a similar function, or are homologous to domains of DsbC were constructed in an effort to understand the effect of the domain orientation in the dimeric protein, and the need for a substrate binding region in disulfide isomerases. We successfully created a series of fusion enzymes, FkpA-DsbAs, which catalyze in vivo disulfide isomerization with comparable efficiency to DsbC. These enzymes comprise of the peptide binding region of the periplasmic chaperone FkpA, which is functionally and structurally similar to the binding domain of DsbC but share no amino acid homology with it, fused to the bacterial oxidase DsbA. In addition, these chimeric enzymes were shown to assist in the initial formation of disulfide bonds, a function that is normally exhibited only by DsbA. Directed evolution of the FkpA-DsbA proteins conferred improved resistance to CuCl₂, a phenotype dependent on disulfide bond isomerization and highlighted the importance of an optimal catalytic site. The bacterial disulfide isomerase DsbC is a homodimeric V-shaped enzyme that consists of a dimerization domain, two α-helical linkers and two opposing catalytic domains. The functional significance of the existence of two catalytic domains of DsbC is not well understood yet. The fact that identical subunits naturally dimerize to generate DsbC has so far limited the study of the individual catalytic sites in the homodimer. In chapter 3 we discuss the engineering, in vivo function, and biochemical characterization chapter 3 we discuss the engineering, in vivo function, and biochemical characterization of DsbC variants covalently linked via (Gly3Ser) flexible linkers. We have either inactivated one of the catalytic sites (CGYC), or entirely removed one of the catalytic domains while maintaining the putative binding area intact. Our results support the hypotheses that dual catalytic domains in DsbC are not necessary for disulfide bond isomerization, but are important in terms of increasing the effective concentration of catalytic equivalents, and that the availability of a substrate binding region is a determining feature in isomerization. Finally, we have carried out initial studies to map the residues and sequence motifs that are recognized in substrate proteins that interact with DsbC. Although the main putative binding region of DsbC has been localized within the limits of the hydrophobic cleft that emerges from the interaction of the N-terminal domains of this enzyme, and, a few native substrates have already been identified, no information on the features of substrate proteins that are recognized by the enzyme has been reported. To address this problem, we have screened two different, 15 amino-acid random peptide libraries for binding to DsbC. We have successfully isolated several peptides with high affinity for the enzyme. Possible consensus binding motifs were identified and their significance in substrate recognition will be examined in future studies.