Parallel and distributed cyber-physical system simulation

Date

2013-12

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The traditions of real-time and embedded system engineering have evolved into a new field of cyber-physical systems (CPSs). The increase in complexity of CPS components and the multi-domain engineering composition of CPSs challenge the current best practices in design and simulation. To address the challenges of CPS simulation, this work introduces a simulator coordination method drawing from strengths of the field of parallel and distributed simulation (PADS), yet offering benefits aimed towards the challenges of coordinating CPS engineering design simulators. The method offers the novel concept of Interpolated Event data types applied to Kahn Process Networks in order to provide simulator coordination. This can enable conservative and optimistic coordination of multiple heterogeneous and homogeneous simulators, but provide important benefits for CPS simulation, such as the opportunity to reduce functional requirements for simulator interfacing compared to existing solutions. The method is analyzed in theoretical properties and instantiated in software tools SimConnect and SimTalk. Finally, an experimental study applies the method and tools to accelerate Spice circuit simulation with tradeoffs in speed versus accuracy, and demonstrates the coordination of three heterogeneous simulators for a CPS simulation with increasing component model refinement and realism.

Description

text

Citation