3D image processing and FPGA implementation for optical coherence tomography
Abstract
This thesis discusses certain aspects of the noninvasive imaging technique known as optical coherence tomography (OCT). Topics include three-dimensional image rendering as well as application of the Fast Fourier Transform to reconstruct the axial scan as a function of depth. Implementations use LabVIEW system design software and a Xilinx Spartan-6 field-programmable gate array (FPGA). The inherent parallel-processing capability of an FPGA opens the possibility of designing a "super-sensor" which entails simultaneous capturing of image and sensor data, giving medical practitioners more data for potentially improved diagnosis. FPGA-based processing would benefit many methods of characterizing biological samples; OCT and photonic crystal microarray biosensors are discussed.