Source Contributions to VOC's to Ozone Formation in Southeast Texas Using a Source-oriented Air Quality Model

Date

2011-08-08

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Houston-Galveston-Brazoria area is in severe non-attainment status for ozone compliance. Source-oriented mechanistic modeling was used to determine the major sources of VOCs that contributes to ozone formation during the Texas Air Quality Study (TexAQS) from August 16, 2000 to September 7, 2000. Environmental Protection Agency (EPA)?s Community Scale Air Quality Model (CMAQ) version 4.6 was used as a host model to include a revised Statewide Air Pollution Research Center (SAPRC99) photochemical mechanism with source-oriented extensions to track the contributions of Volatile Organic Compounds (VOCs) emissions from diesel engines, biogenic sources, highway gasoline vehicles, fuel combustion, off-highway gasoline engines, solvent utilization and petrochemical industries to ozone formation in the atmosphere. Source-oriented emissions needed to drive the model were generated using a revised Sparse Matrix Operator Kernel Emissions (SMOKE) model version 2.4. VOC/NOx ratios are found to be a critical factor in the formation of ozone. Highest ozone formation rates were observed for ratios from 5-15. The contributions of VOC to ozone formation were estimated based on the linear relationship between the rate of NO to NO2 conversion due to radicals generated from VOC oxidation and the rate of net ozone formation. Petroleum and other industrial sources are the largest anthropogenic sources in the urban Houston region and contribute to 45% of the ozone formation in the HGB area. Highway gasoline vehicles make contributions of approximately 28% to ozone formation. Wildfires contribute to as much 11% of ozone formation on days of high wildfire activity. The model results show that biogenic emissions account for a significant amount of ozone formation in the rural areas. Both highway and off-highway vehicles contribute significantly to ozone formation especially in the downwind region. Diesel vehicles do not contribute significantly to ozone formation due to their low VOC emissions.

Description

Citation