Carcass characteristics, fatty acids, stearoyl-coa desaturase gene expression and sensory evaluation of calf-fed and yearling-fed angus steers



Journal Title

Journal ISSN

Volume Title



There is a growing interest in documenting the effect of diet on the ability to convert saturated fatty acids (SFA) to monounsaturated fatty acids (MUFA) by modulating expression of the SCD gene. We propose that if cattle were raised to a constant body weight, their MUFA:SFA ratio will be the same regardless of being calf-fed (CF) or yearling-fed (YF). Twenty-four Angus cattle were acquired for this study. Cattle were slaughtered at weaning at 8 mo of age (SFCF, n=4), eight steers were assigned to the CF group and slaughtered at 12 mo of age (MFCF, n=4) and 16 mo of age (LFCF, n=4). Twelve cattle were assigned to the YF group and slaughtered at 12 mo of age (SFYF, n=4) 16 mo of age (MFYF, n=4) and market weight of 525 kg (LFYF, n=4). Cattle were then statistically analyzed based on time on high energy diet. Fatty acids from digesta, plasma, liver, L. dorsi, and s.c. and i.m. adipose tissue were all analyzed by FAME. In s.c. 18:1 and 16:1 were greatest in LFCF (41.27% and 5.58%, respectively, P = 0.05), and 18:0 and 16:0 did not differ between groups (P > 0.10). MUFA:SFA ratios of s.c. tended to be higher in LFCF animals (1.26) vs. LFYF (1.06, P = 0.10). However, there was no difference seen when comparing CF to YF animals (P = 0.26). MUFA:SFA ratio was higher in i.m. (P = 0.03) and also increased with age (P < .01). A trained sensory panel saw no significant differences between palatability of flavor characteristics of cooked steaks from LFCF, MFYF, or LFYF (P > 0.05). We showed increased SCD gene expression in the LFYF (248.41 to 1528.69 SCD/GAPDH, P = 0.01). Expression was higher in YF (P = 0.04), but their initial deposits of SFA, combined with the lack of SCD expression while on pastures, prevented the MUFA:SFA ratio from increasing at a rate fast enough to change the final ratios in the animal.