NMR and Transport Studies on Group IV Clathrates and Related Intermetallic Materials



Journal Title

Journal ISSN

Volume Title



Increasing efforts have been put into research about thermoelectric materials for the last few decades, especially recently, faced with the crucial demand for new energy and energy savings. Among the potential candidates for new generation thermoelectric materials are the intermetallic clathrates. Clathrates are cage-structured materials with guest atoms enclosed. Previous studies have shown lower thermal conductivities compared with many other bulk compounds, and it is believed that guest atom vibration modes are the reason for such thermal behaviors. Several models, including the Einstein oscillator and soft potential models, have been used to explain the guest motion. However the characterization of the anharmonic oscillating motion can be a challenge.

In this work, Nuclear Magnetic Resonance (NMR), heat capacity and transport measurements have been used to study several clathrate systems, especially the well- known type-I Ba8Ga16Sn30, which has been reported to have one of the lowest thermal conductivities for bulk compounds. In this material the strong anharmonic rattling behavior was investigated and analyzed according to a double well potential model, yielding good agreement with the experimental results. Furthermore, the resistivity and heat capacity results were studied and analyzed according to the influence of the anharmonic contribution. This offered a way to connect the NMR, transport and heat capacity properties, providing an advantageous way to study strongly anharmonic systems.

In further work, several related intermetallic materials were examined for their structure, motion and NMR properties. Dynamical and electrical behaviors were investigated by studying the magnetic and quadrupole NMR spin-lattice relaxation. Type-VIII Ba8Ga16Sn30 exhibits an enhanced dynamics-related term at low temperature, but no rattling response as observed for the type-I structure. Type-I Ba8In16Ge30 was compared with the type-I Ba8Ga16Sn30 because their cage structures are similar. No strong anharmonic contribution was found in the NMR T1 behavior of Ba8In16Ge30, however the T2 showed behavior characteristic of atomic motion. In all cases, the magnetic relaxation was used to characterize the electron structures, and n- type Ba8Ga16Ge30 exhibited a spin-lattice relaxation behavior which is characteristic of impurity band structures near the Fermi surface. Also, a series of Ba8CuxGe46-x clathrates were investigated and showed much more insulating like behavior. In related work, the layered BaGa4 and BaGa3Sn have shown interesting NMR spin-spin relaxation behavior that indicates atomic fluctuations. This is similar to the situation found in type-I Ba8In16Ge30. The influence of atomic motion on the NMR and also the atomic structures of these alloys is further discussed in this work.