A practical method for proactive information exchange within multi-agent teams
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Psychological studies have shown that information exchange is a key component of effective teamwork. In addition to requesting information that they need for their tasks, members of effective teams often proactively forward information that they believe other teammates require to complete their tasks. We refer to this type of communication as proactive information exchange and the formalization and implementation of this is the subject of this thesis. The important question that we are trying to answer is: under normative conditions, what types of information needs can agent teammates extract from shared plans and how can they use these information needs to proactively forward information to teammates? In the following, we make two key claims about proactive information exchange: first, agents need to be aware of the information needs of their teammates and that these information needs can be inferred from shared plans; second, agents need to be able to model the beliefs of others in order to deliver this information efficiently. To demonstrate this, we have developed an algorithm named PIEX, which, for each agent on a team, reasonably approximates the information-needs of other team members, based on analysis of a shared team plan. This algorithm transforms a team plan into an individual plan by inserting coomunicative tasks in agents' individual plans to deliver information to those agents who need it. We will incorporate a previously developed architecture for multi-agent belief reasoning. In addition to this algorithm for proactive information exchange, we have developed a formal framework to both describe scenarios in which proactive information exchange takes place and to evaluate the quality of the communication events that agents running the PIEX algorithm generate. The contributions of this work are a formal and implemented algorithm for information exchange for maintaining a shared mental model and a framework for evaluating domains in which this type of information exchange is useful.