RELAP5-3D Thermal Hydraulics Computer Program Analysis Coupled with DAKOTA and STAR-CCM+ Codes



Journal Title

Journal ISSN

Volume Title



RELAP5-3D has been coupled with both DAKOTA and STAR-CCM+ in order to expand the capability of the thermal-hydraulic code and facilitate complex studies of desired systems. In the first study, RELAP5-3D was coupled with DAKOTA to perform a sensitivity study of the South Texas Project (STP) power plant during steady-state and transient scenarios. The coupled software was validated by analyzing the simulation results with respect of the physical expectations and behavior of the power plant, and thermal-hydraulic parameters which caused greatest sensitivity where identified: inlet core temperature and reactor thermal power. These variables, along with break size and discharge coefficients, were used for further investigation of the sensitivity of the RELAP5-3D LOCA transient simulation under three difference cases: two inch break, six inch break, and guillotine break. Reactor thermal power, core inlet temperature, and break size were identified as producing the greatest sensitivity; therefore, future research would include uncertainty quantification for these parameters. In the second study, a small scale experimental facility, designed to study the thermal hydraulic phenomena of the Reactor Cavity Cooling System (RCCS) for a Very High Temperature Reactor (VHTR), was used as a model to test the capabilities of coupling Star-CCM+ and RELAP5-3D. This chapter discusses the capabilities and limitations of the STAR-CCM+/RELAP5-3D coupling, and a simulation, on the RCCS facility, was performed using STAR-CCM+ to study the flow patterns where expected complex flow phenomena occur and RELAP5-3D for the complete system. The code showed inability to perform flow coupling simulations and it is unable, at this time, to handle closed loop systems. The thermal coupling simulation was successful and showed congruent qualitative results to physical expectations. The locations of large fluid vortices were located specifically in the pipes closest to the inlet of the bottom manifold. In conclusion, simulations using coupled codes were presented which greatly improved the capabilities of RELAP5-3D stand-alone and computational time required to perform complex thermal-hydraulic studies. These improvements show greatly benefit for industrial applications in order to perform large scale thermal-hydraulic systems studies with greater accuracy while minimizing simulation time.