Identification of Pseudomonas aeruginosa via a poplar tree model

Date

2009-05-15

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Differential gene expression of P. aeruginosa in a rhizosphere biofilm on poplar tree roots was examined in order to identify new virulence factors from this human pathogen. Changes in gene expression for poplar trees contacted with P. aeruginosa was examined as well to identify the response of poplar roots to P. aeruginosa infection. This is the first study of the whole-transcriptome analysis of P. aeruginosa on a plant tree root. The 20 most highly-induced genes of P. aeruginosa were examined for their role in biofilm formation, rhizosphere colonization, barley germination, and poplar tree killing assays. Seven previously uncharacterized virulence genes (PA1385, PA2146, PA2462, PA2463, PA2663, PA4150, and PA4295) were identified. The role of PA2663, a hypothetical protein discovered in the microarrays of P. aeruginosa while killing poplar trees, was examined in further detail. Expression of PA2663 protein increases biofilm formation in P. aeruginosa PAO1 drastically. By complementing the PA2663 mutation in trans and by studying with DNA microarrays and RT-PCR the PA2663 mutant vs. the wild-type strain, PA2663 was confirmed to be related to biofilm formation and was found that it is the first protein to control the psl operon in P. aeruginosa PAO1. Furthermore, PA2663 protein increases pyoverdine synthesis and quorum sensing (QS)- regulated phenotypes. A biofilm formation-related hypothetical protein, PA0939, was identified in this study. The effects of indole and 7-hydroxyindole on P. aeruginosa virulence factors were also examined for the first time. Indole and 7HI repressed expression of mexGHI-opmD multidrug efflux pump genes and genes involved in synthesis of QS-regulated virulence factors (pyocyanin, rhamnolipid, PQS, and pyoverdine production). In addition, the effects of an anti-cancer uracil analog, 5-fluorouracil (5-FU) on P. aeruginosa virulence factors and E. coli K-12 biofilm formation were examined. 5-FU repressed biofilm formation, abolished quorum-sensing phenotypes, and reduced virulence in P. aeruginosa. DNA microarray and biofilm studies with 5-FU in E. coli revealed that 5-FU controls biofilm formation through the AriR protein in E. coli K-12 strain. The effects of lsrR and lsrK mutations on E. coli biofilm formation were also examined by flow cell experiments.

Description

Citation