Discretization and Approximation Methods for Reinforcement Learning of Highly Reconfigurable Systems

Date

2010-07-14

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

There are a number of techniques that are used to solve reinforcement learning problems, but very few that have been developed for and tested on highly reconfigurable systems cast as reinforcement learning problems. Reconfigurable systems refers to a vehicle (air, ground, or water) or collection of vehicles that can change its geometrical features, i.e. shape or formation, to perform tasks that the vehicle could not otherwise accomplish. These systems tend to be optimized for several operating conditions, and then controllers are designed to reconfigure the system from one operating condition to another. Q-learning, an unsupervised episodic learning technique that solves the reinforcement learning problem, is an attractive control methodology for reconfigurable systems. It has been successfully applied to a myriad of control problems, and there are a number of variations that were developed to avoid or alleviate some limitations in earlier version of this approach. This dissertation describes the development of three modular enhancements to the Q-learning algorithm that solve some of the unique problems that arise when working with this class of systems, such as the complex interaction of reconfigurable parameters and computationally intensive models of the systems. A multi-resolution state-space discretization method is developed that adaptively rediscretizes the state-space by progressively finer grids around one or more distinct Regions Of Interest within the state or learning space. A genetic algorithm that autonomously selects the basis functions to be used in the approximation of the action-value function is applied periodically throughout the learning process. Policy comparison is added to monitor the state of the policy encoded in the action-value function to prevent unnecessary episodes at each level of discretization. This approach is validated on several problems including an inverted pendulum, reconfigurable airfoil, and reconfigurable wing. Results show that the multi-resolution state-space discretization method reduces the number of state-action pairs, often by an order of magnitude, required to achieve a specific goal and the policy comparison prevents unnecessary episodes once the policy has converged to a usable policy. Results also show that the genetic algorithm is a promising candidate for the selection of basis functions for function approximation of the action-value function.

Description

Citation