Discrete Lagrange equations for reacting thermofluid systems



Journal Title

Journal ISSN

Volume Title



The application of Lagrange's equations to non-equilibrium reacting compressible thermofluid systems yields a modeling methodology for thermofluid dynamics compatible with the discrete energy methods used extensively in other energy domains; examples include mechanical systems simulations and molecular dynamics modeling. The introduction of internal energies as generalized coordinates leads to a thermomechanical model with a simple but general form. A finite element interpolation is used to formulate the ODE model in an ALE reference frame, without reference to any partial differential equations. The formulation is applied to highly nonlinear problems without the use of any time-splitting or shock-tracking methods. The method is verified via the solution of a set of example problems which incorporate a variety of reference frames, both open and closed control volumes, and moving boundaries. The example simulations include transient detonations with complex chemistry, piston-initiated detonations, canonical unstable overdriven detonations, high-resolution induction-zone species evolution within a pulsating hydrogen-air detonation, and the detonation of a solid explosive due to high-velocity impact.