Optimization of a high-efficiency jet ejector by computational fluid dynamic software
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Research was performed to optimize high-efficiency jet ejector geometry (Holtzapple, 2001) by varying nozzle diameter ratios from 0.03 to 0.21, and motive velocities from Mach 0.39 to 1.97. The high-efficiency jet ejector was simulated by Fluent Computational Fluid Dynamics (CFD) software. A conventional finite-volume scheme was utilized to solve two-dimensional transport equations with the standard k-?? turbulence model (Kim et. al., 1999). In this study of a constant-area jet ejector, all parameters were expressed in dimensionless terms. The objective of this study was to investigate the optimum length, throat diameter, nozzle position, and inlet curvature of the convergence section. Also, the optimum compression ratio and efficiency were determined. By comparing simulation results to an experiment, CFD modeling has shown high-quality results. The overall deviation was 8.19%, thus confirming the model accuracy. Dimensionless analysis was performed to make the research results applicable to any fluid, operating pressure, and geometric scale. A multi-stage jet ejector system with a total 1.2 compression ratio was analyzed to present how the research results may be used to solve an actual design problem. The results from the optimization study indicate that the jet ejector efficiency improves significantly compared to a conventional jet-ejector design. In cases with a subsonic motive velocity, the efficiency of the jet ejector is greater than 90%. A high compression ratio can be achieved with a large nozzle diameter ratio. Dimensionless group analysis reveals that the research results are valid for any fluid, operating pressure, and geometric scale for a given motive-stream Mach number and Reynolds ratio between the motive and propelled streams. For a given Reynolds ratio and motivestream Mach number, the dimensionless outlet pressure and throat pressure are expressed as Cp and Cpm, respectively. A multi-stage jet ejector system with a total 1.2 compression ratio was analyzed based on the optimization results. The result indicates that the system requires a lot of high-pressure motive steam, which is uneconomic. A high-efficiency jet ejector with mixing vanes is proposed to reduce the motive-steam consumption and is recommended for further study.