Observations, dynamics and predictability of the mesoscale convective vortex event of 10-13 June 2003



Journal Title

Journal ISSN

Volume Title


Texas A&M University


This study examines the dynamics and predictability of the mesoscale convective vortex (MCV) event of 10-13 June 2003 which occurred during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). The MCV formed from a preexisting upper-level disturbance over the southwest United States on 10 June and matured as it traveled northeastward. The BAMEX field campaign provided a relatively dense collection of upper air observations through dropsondes on 11 June during the mature stage of the vortex. While several previous studies have focused on analysis of the dynamics and thermodynamics of observed and simulated vortices, few have addressed the ability to predict MCVs using numerical models. This event is of particular interest to the study of MCV dynamics and predictability given the anomalously strong and long-lived nature of the circulation and the dense data set. The first part of this study explores the dynamics of this MCV through an in-depth analysis of data from the profiler network and BAMEX dropsonde observations, in addition to the conventional surface and sounding observations as well as radar and satellite images. Next, issues relating to model performance are addressed through anevaluation of two state-of-the-art mesoscale models with varying resolutions. It is determined that the ability of a forecast model to accurately predict this MCV event is directly related to its ability to simulate convection. It is also shown that the convective-resolving Weather Research and Forecast (WRF) model with horizontal grid increments of 4 km displays superior performance in its simulation of this MCV event. Finally, an ensemble of 20 forecasts using mesoscale model MM5 with horizontal grid increments of 10 km are employed to evaluate probabilistically the dynamics and predictability of the MCV through the examination of the ensemble spread as well as the correlations between different forecast variables among ensemble members. It is shown that after MCV development, the ensemble mean performs poorly while individual ensemble members with good forecasts of convection at all stages of the MCV also forecast the midlevel vortex well. Furthermore, correlations among ensemble members generally support the findings in the observational analysis and in previous literature.