Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas Tech University
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas Tech University
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A computational three-field methodology for non-conforming finite elements over partitioned domains

    Thumbnail
    Date
    2005-05
    Author
    Franklin, Scott R.
    Metadata
    Show full item record
    Abstract
    In this thesis, we describe a computational methodology to couple physical processes defined over independent sub-domains, that are partitions of a global domain in three-dimensions. The methodology presented helps to compute the numerical solution on the global domain by appropriately piecing the local solutions from each sub-domain. We discuss the mixed method formulation for the technique applied to a model problem and derive an error estimate for the finite element solution. We demonstrate through numerical experiments, that the method is robust and reliable in higher-dimensions. Additionally, this thesis is concerned with the application of non-conforming finite element methods to stochastic partial differential equations. We present a mixed formulation of a three-field finite element method applied to an elliptic model problem involving stochastic loads. We then derive the exact form for the expected value and variance of the solution. Additionally the rate of convergence for the stochastic error is presented. Finally, we demonstrate the reliability of the method by comparing our exact results with numerical experiments. The method is then extended for use in parabolic partial differential equations (e.g., time-dependent systems). After providing the derivation for the semi-discretization of the parabolic problem, we consider two classical full discretizations of a model problem: the backward Euler method and the Crank-Nicolson method. This method is implemented and used to model actual physical phenomena, namely, we consider the heat conduction/diffusion equation. Finally, we report on the specifics of the implementation of the method in various distributed computing environments, including a computational grid and a shared memory multi-processor.
    URI
    http://hdl.handle.net/2346/957
    Collections
    • Texas Tech University

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV