Logos Ex Machina: A reasoned approach toward Cancer

Date

2012-05

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Limitations in our current ability to integrate a diverse spectrum of genetic information in an effort to elucidate the underlying causes of cancer has spawned the need for a novel cancer modeling approach. Public repositories of biological pathways and gene expression experiments were combined in order to provide a systems biology approach toward cancer. Furthermore, by unifying these sources of knowledge, the ability to predict expression levels of unmeasured genes was developed. This technique was then applied to a variety of cancer types in order to resolve commonalities between heretofore divergent (or disparate) cancers. The results generated in this manner revealed characteristics that challenge the current prevailing paradigm of cancer. Specifically, the predicted results, according to the Somatic Mutation Theory of Cancer, of a significant upregulation of oncogenes and a significant downregulation of tumor suppressor genes was not found. In contrast, it was found that oncogenes were significantly downregulated and tumor suppressor genes were upregulated among the cancers examined. Furthermore, the results demonstrate the differential expression, in cancer cells, of genes involved in the cellular differentiation and wound healing processes. These results were used as a springboard to develop a novel oncogenesis hypothesis, named Umbracesis. In short, the Umbracesis hypothesis proposes that disruption of the wound healing process via carcinogens, occurs in such a way as to prevent organismic homeostasis from being recovered or prevent full re-differentiation of dedifferentiated cells. The former concept is implicated in inflammatory cancers. Whereas the latter concept, is implicated in cancers that show characteristics associated with embryonic tissues. It was concluded, that the instrumental use of the modeling approach, developed within this study, has implications beyond cancer and may be of use within other areas of biomedical concern.

Description

Citation