Phosphorescent cyclometalated iridium(III) complexes and corresponding conducting metallopolymers

Date

2012-05

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Conducting metallopolymers have been investigated for a variety of applications due to their ability to take advantage of both the mechanical processability of the polymer material, as well as the optical and electronic properties of the metal. Our project goal is to design, synthesize and characterize novel iridium(III)-containing conducting metallopolymers for use as the active layer in polymer light-emitting diodes. We have utilized thiophene functionalized ligands that can be readily electropolymerized into conducting polymer thin films and can be easily incorporated into a device structure. Iridium(III) was chosen as the metal center due to its promising photophysical properties, as similar complexes have demonstrated high luminescent quantum yields and short phosphorescent lifetimes. The coordination environment around the metal can be altered synthetically to tune the emission wavelength across the visible spectrum. The synthetic control over the polymer backbone, as well as the iridium(III) ligand environment, allowed us to independently vary each component, which has provided a variety of materials. The materials are characterized through 1H and 13C NMR, mass spectrometry, elemental analysis, electrochemistry, X-Ray diffraction and X-Ray Photoelectron Spectroscopy. The photophysical properties of the materials are studied through UVvii Visible absorption spectroscopy, UV-Vis-NIR spectroelectrochemistry and steadystate/ time-resolved emission spectroscopy.

Description

text

Citation